I am trying to find the root of an equation in Mathematica. But am unable to find it. The Plot function gives a very noisy graph. Can anyone please provide me with a solution to this
A10=
-0.24999999999999997` (2.611333478147288`*^17 \
(-9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.` +
2.611333478147288`*^17 (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.`) \
(-9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5` (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5` (-5.3376918284751424`*^26 \
(-9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.5` Cosh[
204404.83274706744` (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^0.5`] Sin[
204404.83274706744` (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5`] Sinh[
183964.3494723607` (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^0.5`]^2 +
Sinh[204404.83274706744` (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5`] \
(2.6688459142375712`*^26 (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^1.5` (Cos[
163523.86619765396` (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^0.5`] -
Cos[204404.83274706744` (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^0.5`]) +
5.222666956294576`*^17 (2.611333478147288`*^17 \
(-9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.` +
2.611333478147288`*^17 (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.`) (-0.000072` +
5.2226669562945766`*^13 (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.` \
(9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^1.`) \
(-9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5` \
(9.305307031664072`*^-8 + (8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5` Sin[
204404.83274706744` (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^0.5`] +
2.6688459142375712`*^26 (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^1.5` Sin[
204404.83274706744` (-9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 +
7.658922220148525`*^-18 P)^0.5`)^0.5`] Sinh[
367928.6989447214` (9.305307031664072`*^-8 + \
(8.658873895353684`*^-15 + 7.658922220148525`*^-18 P)^0.5`)^0.5`]))
Plot[A10, {P, 0, 10}]
Is there any way to improve the accuracy of the plot.


Remove[A10, P], I can't reproduce it in V11.3 – Coolwater Jul 07 '18 at 14:32Remove[A10, P], then try to evaluate your code again" (Removeclears any definitions that might still float around from earlier) – Lukas Lang Jul 07 '18 at 14:43