I am aware that a similar question has been asked, for example, here and here, but none of the proposed solutions solves my problem, so please wait before you mark this question as a duplicate.
Consider this simple problem where one has two bodies of masses mA, mB, their relative position BA, and the position CC of their center of mass:
mA = 398600.435436;
mB = 4902.800066;
CC = 0.12051741410138465477
BA = -0.00080817735147818490
One wants to know the positions, xB and xA, of the two bodies, which are given by
xA = (mA CC + mB CC - mB BA)/(mA + mB)
xB = (mB CC + mA (CC + BA))/(mA + mB)
If I evaluate xA and xB numerically in Mathematica 10.3.1.0, and then compute the relative distance between the two bodies, I should get BA. However, there is a small numerical difference:
In[47]:= xB - xA - BA
Out[47]= -2.168404344971009*10^-18
Do you know how to increase the numerical precision in order to decrease the difference above?