I'm working with perturbation in differential geometry. I got a huge matrix for Christoffel symbol, and I need to simplify it using the consideration that $\phi^2$, $\psi^2$, $\phi\partial_{\mu}\phi$, $\psi\partial_{\mu}\phi$,$\psi\partial_{\mu}\psi$, $\phi\partial_{\mu}\psi$ ($\mu=0,1,2,3$, where $0$ is temporal derivative and $1,2,3$ are spatial derivative), $\phi\psi$ are equal to zero.
My code
crd = {t, x1, x2, x3};
metric = {{-n[t]^2 (1 + 2*\[CapitalPhi][crd]), 0 , 0, 0}, {0,
A[t]^2 (1 - 2*\[CapitalPsi][crd]), 0, 0}, {0, 0,
A[t]^2 (1 - 2*\[CapitalPsi][crd]), 0}, {0, 0, 0,
A[t]^2 (1 - 2*\[CapitalPsi][crd])}};
MatrixForm[metric];
inversemetric = {{-(1 - 2*\[CapitalPhi][crd])/n[t]^2, 0 , 0,
0}, {0, (1 + 2*\[CapitalPsi][crd])/a[t]^2, 0, 0}, {0,
0, (1 + 2*\[CapitalPsi][crd])/a[t]^2, 0}, {0, 0,
0, (1 - 2*\[CapitalPsi][crd])/a[t]^2}};
christoffel = Expand[FullSimplify[Table[ 1/2 Sum[inversemetric[[b, s]] (D[metric[[d, s]], crd[[c]]] + D[metric[[s, c]], crd[[d]] ] - D[metric[[c, d]], crd[[s]] ] ), {s, 1, 4}], {b, 1, 4}, {c, 1, 4}, {d, 1, 4}]]];
christoffel[[1, 1, 1]]
$\partial_{0}\Phi-2 \partial _0\Phi \Phi +\frac{n'(t)}{n(t)}-\frac{4 \Phi ^2 n'(t)}{n(t)}$
It needs to be:
$\partial_{0}\Phi +\frac{n'(t)}{n(t)}$
and
christoffel[[1, 2, 2]]
$\frac{4 \Phi \Psi A(t) A'(t)}{n(t)^2}-\frac{2 \Phi A(t) A'(t)}{n(t)^2}-\frac{2 \Psi A(t) A'(t)}{n(t)^2}+\frac{A(t) A'(t)}{n(t)^2}+\frac{2 \partial _0\Psi \Phi A(t)^2}{n(t)^2}-\frac{\partial _0\Psi A(t)^2}{n(t)^2}$
It needs to be
$-\frac{2 \Phi A(t) A'(t)}{n(t)^2}-\frac{2 \Psi A(t) A'(t)}{n(t)^2}+\frac{A(t) A'(t)}{n(t)^2}-\frac{\partial _0\Psi A(t)^2}{n(t)^2}$
inversemetric? When I try to execute your code (usinginversemetric=Inverse[metric];), I don't obtain the same results withcristoffels. – giochanturia Sep 08 '18 at 18:41inversematrixhere, I might be able to help you out. – giochanturia Sep 08 '18 at 20:22