I have an equation and I want to solve it with FindRoot but is there any way to give a range to FindRoot instead of giving a point? this is my MMA code:
uvariable3 =
u /. FindRoot[(1/(1/u^2 + 1/(v^2 - u^2)))*((
BesselJ[m - 1, u] - BesselJ[m + 1, u])/(
2*u*BesselJ[m,
u]) + (BesselK[m - 1, Sqrt[v^2 - u^2]] +
BesselK[m + 1, Sqrt[v^2 - u^2]])/(-2*Sqrt[v^2 - u^2]*
BesselK[m, u]))*((BesselJ[m - 1, u] - BesselJ[m + 1, u])/(
2*u*BesselJ[m,
u]) + ((n2/
n1)^2*((BesselK[m - 1, Sqrt[v^2 - u^2]] +
BesselK[m + 1, Sqrt[v^2 - u^2]])/(-2*Sqrt[v^2 - u^2]*
BesselK[m, u])))) - m^2/u^2 ==
m^2*((n2/n1)^2*1/(v^2 - u^2)), {u, 1.5}]
and u is the only variable. I have the value for other variables.
NSolve:NSolve[{f[x] == g[x], xmin <= x <= xmax}, x]. If appropriate, you can also restrict the domain. – Bob Hanlon Sep 10 '18 at 12:57MapFindRootonto a list of starting points taken from thePlot:FindRoot[f[x] == g[x], {x, #}] & /@ pts– Bob Hanlon Sep 10 '18 at 13:28FindRootworks (Newton's method) and why it gives you a single root only? – Szabolcs Sep 10 '18 at 13:58NSolve[{Eq(r) == 0,r_Min <= r <= r_Max},r]– Mehrab Sep 10 '18 at 15:14