Update 2: Using OP's ContourPlot with RegionFunction and adding the polar grid lines as Mesh and polar ticks and tick labels as Epilog:
mesh1 = Range[0, Pi/3, Pi/24];
mesh2 = Range[0, Pi/3, Pi/24/5];
ticks = Join @@ ((First@ Normal@ ParametricPlot[ 4 v { Cos[u], Sin[u]},
{u, 0, Pi/3}, {v, #, 1},
BoundaryStyle -> None, PlotStyle -> None,
MeshFunctions -> {#3 &, #4 &}, Mesh -> {#2, {1}},
MeshStyle -> Directive[Thickness[.005], CapForm["Round"]]]) & @@@
Transpose[{{.95, .975}, {mesh1, mesh2}}]);
labels = Table[Text[Style[j , 14],
4 {Cos@j, Sin@j}, {0, -1.2}, {Cos[j - Pi/2], Sin[j - Pi/2]}], {j, mesh1}];
ContourPlot[Cos[x] + Cos[y], {x, 0, 4}, {y, 0 , 4},
PlotRange -> {{-1, 5}, {-1, 5}},
Contours -> 30, ColorFunction -> Hue,
PerformanceGoal -> "Quality", PlotPoints -> 50,
MeshFunctions -> {ArcTan[#, #2] &, Sqrt[#^2 + #2^2] & },
Mesh -> {mesh1, 5}, MeshStyle -> White,
ContourStyle -> None, PlotLegends -> Automatic,
RegionFunction -> (0.01 <= Sqrt[#^2 + #2^2] <= 4 && 0. <= ArcTan[#, #2] <= π/3&),
Epilog -> {ticks, labels}]

Update: To use the cropped original contour plot as Texture just add the options
TextureCoordinateFunction -> ({#, #2}&),
TextureCoordinateScaling -> False
to pp. Then Show[pp, Epilog -> {ticks, labels}] gives

Original answer:
Using the method from this answer to use ContourPlot output as Texture in ParametricPlot
cpl = ContourPlot[Cos[x] + Cos[y], {x, -Pi, Pi}, {y, -Pi, Pi},
Contours -> 30, PlotRangePadding -> 0, Frame -> False,
ColorFunction -> Hue, PerformanceGoal -> "Quality", PlotPoints -> 50,
MaxRecursion -> 3, ContourStyle -> None, PlotLegends -> Automatic] ;

{cp, legend} = {cpl[[1]], RawBoxes@Replace[ToBoxes[cpl[[2, 1]] ], Rule[FrameTicks, _] :>
Rule[FrameTicks, False], ∞] }
mesh1 = Range[0, Pi/4, Pi/24];
mesh2 = Range[0, Pi/4, Pi/24/5];
pp = ParametricPlot[v { Cos[u], Sin[u]}, {u, 0, Pi/4}, {v, .1, 1},
PlotLegends -> legend, ImageSize -> Large,
PlotStyle -> Texture[cp],
MeshFunctions -> {#3 &, #4 &}, Mesh -> {mesh1, Range[0, 1, .2]},
MeshStyle -> Directive[White, Thick] , PlotRange -> All,
PlotRangeClipping -> False, ImagePadding -> Scaled[.05],
ImageSize -> 300, Frame -> False, Axes -> False] /. Opacity[_] :> Opacity[1]

You can use ParametricPlot and Text to generate polar ticks and labelsand use them as Epilog in Show:
ticks = Join @@ ((First@ Normal@ParametricPlot[v { Cos[u], Sin[u]}, {u, 0, Pi/4},
{v, #, 1}, BoundaryStyle -> None, PlotStyle -> None,
MeshFunctions -> {#3 &, #4 &}, Mesh -> {#2, {1}},
MeshStyle -> Directive[Thickness[.005], CapForm["Round"]]]) & @@@
Transpose[{{.95, .975}, {mesh1, mesh2}}]);
labels = Table[Text[Style[j , 14], {Cos@j, Sin@j}, {0, -1.2},
{Cos[j - Pi/2], Sin[j - Pi/2]}], {j, mesh1}];
Show[pp, Epilog -> {ticks, labels}]

Note: see see this answer about the unwanted frame ticks in BarLegend output.