In the math theory, we know have
$$(x)^{\frac{m}{n}=}\sqrt[n]{x^m} \ ,$$
it means
$$(-1.5)^{\frac{1}{0.3}}=(-1.5)^{\frac{10}{3}}=\sqrt[3]{(-1.5)^{10}}=\sqrt[3]{1.5^{10}}\simeq 3.8634 \ .$$
But in mathematica, when we input
(-1.5)^(1/0.3)
we will get a complex number, i.e.
-1.93170528-3.3458117i
Why the result is different? Which is right?
Asked
Active
Viewed 25 times
0
J. M.'s missing motivation
- 124,525
- 11
- 401
- 574
J.W Kang
- 408
- 3
- 6
Solve[(-1.5)^(10) == x^3, x]. – MarcoB Sep 30 '18 at 01:59Surd[]. – J. M.'s missing motivation Sep 30 '18 at 02:08