I have a function $ x(t) $ and I denoted its Fourier transformation as $ X(f) $. I want to get the Fourier transformation of $ x(t)\mathrm e^{2\mathrm i \pi f_0 t} $, and I know the result is $ X(f-f_0) $.
I tried to obtain this result by using Mathematica, but didn't obtain X[f-f0] as output:-
X[f] := FullSimplify@FourierTransform[x[t], t, f, FourierParameters -> {0, -2 Pi}]
FullSimplify@FourierTransform[x[t]*Exp[2 I \[Pi] f0 t], t, f, FourierParameters -> {0, -2 Pi}]
How can I obtain X[f-f0] as output?
Thanks!
FourierTransformjust can't do that, but we can write a "shell" for it. Strongly related: https://mathematica.stackexchange.com/a/71393/1871 – xzczd Oct 09 '18 at 16:02A[w-w0]instead ofFourierTransform[a[t], t, w - w0, FourierParameters -> {0, -2 \[Pi]}]as output? – H42 Oct 09 '18 at 17:50ft[x[t] Exp[2 I Pi f0 t], t, s] /. HoldPattern@FourierTransform[f_[x_], _, s_] :> Symbol[ToUpperCase@ToString@f][s]. BTW, personally I recommend not to rewriteaasAi.e.ft[x[t] Exp[2 I Pi f0 t], t, s] /. HoldPattern@FourierTransform[f_[x_], _, s_] :> f[s], just keep in mind nowxactually represents $X$, this usually makes programming easier. – xzczd Oct 10 '18 at 07:38