I am trying to make a density plot of $|min~[Im(v)]|$ (where $v$ are the eigenvalues of a matrix) as function of $\gamma$ (horizontal axis) and $T$(vertical), The code upto now is
ListDensityPlot[
Table[Min[
Im /@ Eigenvalues[
With[{k = 2, p = Pi/2},
With[{a = -2 Cos[p], b = -2 Cos[p] - \[Gamma]/(1 + Abs[T]^2)^2,
c = (\[Gamma]*T^2*E^(2 I*p))/(1 + Abs[T]^2)^2, n = 2*k + 1},
mat = SparseArray[{Band[{1, 1}] ->
Join[ConstantArray[a, n - (k + 1)], {b},
ConstantArray[a, n - (k + 1)]],
Band[{2, 1}] -> ConstantArray[1, 2 k],
Band[{1, 2}] -> ConstantArray[1, 2 k],
Band[{n + 1, n + 1}] ->
Join[ConstantArray[-a, n - (k + 1)], {-b},
ConstantArray[-a, n - (k + 1)]],
Band[{n + 1, n + 2}] -> ConstantArray[-1, 2 k],
Band[{n + 2, n + 1}] ->
ConstantArray[-1, 2 k], {n + k + 1, k + 1} -> -c, {k + 1,
n + k + 1} -> c}, {2 n, 2 n}];
mat]]]], {\[Gamma], -30, 30, 0.1}, {T, 0., 5, 0.1}],
PlotRange -> All, DataRange -> {{-30, 30}, {0, 5}}]
However, my required output should be close to the following [![enter image description here][2]][2]
The required output is for k=49 case, however it takes longer to get an output with $198\times 198$ matrix ($k=49$), so I thought one could get atleast something similar for a smaller matrix. Therefore I used $k=2$ just to see if I get any close.

$\gamma$ and 

x-axisand $T \in [0, 5]$ ony-axis, just as you defined. – Valrog Oct 26 '18 at 06:45