There is an equation for example:
eqn=D[c[x, t], t] == d D[c[x, t], x, x];
When I make a LaplaceTransform of it:
LaplaceTransform[eqn, t, s]
Then mathematica will impose the transform to both sides of the '=', and the result will be :
s*LaplaceTransform[c[x, t], t, s] - c[x, 0] == d*LaplaceTransform[Derivative[2, 0][c][x, t], t, s]
But when I make a FourierTransform it won't do that, and the output :
FourierTransform[Derivative[0, 1][c][x, t] == d*Derivative[2, 0][c][x, t], t, \[Omega]]
And I just wonder know why. What's the difference?