If 3x + logx = 30, then what is x?
Solution with W-Function... The equation is 3x+Logx=30(1) we know that accept we^w=y=>w=W(k,y)..k in Z.But if w=3x=>3xe^(3x)=y=>3x=W(k,y)(2) but from (1)… Log(3x)+3x=Logy=>Log3+Logx+3x=Logy=> Logx+3x=Logy-Log3=Log(y/3). Because we have the same equation {1,2} and then Log(y/3)=30=>y=3*e^30.Then General Solution is
3x=W(k,y)=>x=1/3W(k,3*e^30),, k in Z.


Reduce[3*x + Log[x] == 30, x],,
C[1] [Element] Integers && x == 1/3 ProductLog[C[1], 3 E^30] – Nikos Mantzakouras Nov 15 '18 at 20:36
Plot[{Log[x], 30 - 3 x}, {x, 1, 12}]count as a graphical method of solving this? – Bill Nov 15 '18 at 23:11