0

If 3x + logx = 30, then what is x?

Solution with W-Function... The equation is 3x+Logx=30(1) we know that accept we^w=y=>w=W(k,y)..k in Z.But if w=3x=>3xe^(3x)=y=>3x=W(k,y)(2) but from (1)… Log(3x)+3x=Logy=>Log3+Logx+3x=Logy=> Logx+3x=Logy-Log3=Log(y/3). Because we have the same equation {1,2} and then Log(y/3)=30=>y=3*e^30.Then General Solution is

3x=W(k,y)=>x=1/3W(k,3*e^30),, k in Z.

2 Answers2

1

For a purely graphical approach, you can use the options MeshFunctions and Mesh and post-process the Plot output to add text elements:

f[x_] = 3 x + Log[x] - 30;
Normal[Plot[f[x], {x, 0, 20}, 
   PlotPoints -> 100,
   MeshFunctions -> {#2 &}, 
   Mesh -> {{0}}, 
   MeshStyle -> Directive[Red, PointSize[Large]]]] /. 
  p_Point :> {p, Text[Style[p[[1, 1]], 16], {-1, 5} + p[[1]]]}

enter image description here

kglr
  • 394,356
  • 18
  • 477
  • 896
0

Normally transcendental equations are numerically solved with NSolve or FindRoot.

f[x_] = 3 x + Log[x] - 30;

Plot[f[x], {x, 0, 20}]

enter image description here

NSolve[f[x] == 0 && x > 5 && x < 15]
(* {{x -> 9.25816}} *)

FindRoot[f[x] == 0, {x, 10}]
(* {x -> 9.25816} *)
Bill Watts
  • 8,217
  • 1
  • 11
  • 28