Some (older) members of this group might remember playing vinyl LP records. Recently, at the Abbey Road studio there was a spiroglyphics coloring book for sale. It looks like a nice programming exercise using image processing—but I was wondering if anyone had already written code to turn pictures into a spiroglyphic? Indeed, it would be a nice built-in command!
Asked
Active
Viewed 1.6k times
15
1 Answers
20
Update
In case your want to get your coloring on:
getColoringLines =
ColorNegate@
GradientFilter[ImportString[ExportString[#, "PNG"], "PNG"], 1] &;
getColoringLines@spiroglyph[testImg, .36, 25, {6, 2}]
Original
Here's my initial attempt:
Clear[spiroglyph];
Options[spiroglyph] = Options[Rasterize];
spiroglyph[img_,
clipping : _?(0 < # < 1 &) : .1,
rots_Integer: 25,
thickGap : {_Integer, _Integer} : {10, 5},
mode : "Positive" | "Negative" : "Positive",
ops : OptionsPattern[]] :=
Module[
{
baseDims = ImageDimensions[img],
diskRadius,
bw = ColorConvert[img, "Grayscale"],
baseMask,
mask,
clipMask,
mid,
sampleImage,
gapMask,
minMask,
pr
},
diskRadius = Min[baseDims];
mid = baseDims/2;
pr =
{
{-diskRadius, diskRadius},
{-diskRadius, diskRadius}
};
baseMask =
Binarize@
Rasterize[
ParametricPlot[
(diskRadius/rots) (θ/(2 π)) {Cos[θ],
Sin[θ]}, {θ, 0, 2 π*rots},
Axes -> False,
PlotStyle ->
Directive[AbsoluteThickness[thickGap[[1]]], Black],
ImageSize -> baseDims,
PlotRangePadding -> Scaled[.01],
PlotRange -> pr
],
ops
];
mask = ImageResize[baseMask, baseDims];
gapMask =
Binarize@
Rasterize[
ParametricPlot[
((diskRadius/
rots) ((θ + π)/(2 π))) {Cos[θ],
Sin[θ]}, {θ, 0, 2 π*rots},
Axes -> False,
PlotStyle ->
Directive[AbsoluteThickness[thickGap[[2]]], Black],
ImageSize -> baseDims,
PlotRangePadding -> Scaled[.01],
PlotRange -> pr
],
ops
];
gapMask = ImageResize[gapMask, baseDims];
If[mode === "Positive", {mask, gapMask} = {gapMask, mask}];
sampleImage =
Blend[
If[mode === "Positive",
{bw, ColorNegate@mask},
{ColorNegate@bw, mask}
],
.3
];
minMask =
Binarize@
Rasterize[
ParametricPlot[
Evaluate@
If[mode === "Positive",
(diskRadius/rots) (θ/(2 π)) {Cos[θ],
Sin[θ]},
(diskRadius/
rots) ((θ + π)/(2 π)) {Cos[θ],
Sin[θ]}
], {θ, 0, 2 π*rots},
Axes -> False,
PlotStyle -> Directive[AbsoluteThickness[1], Black],
ImageSize -> baseDims,
PlotRangePadding -> Scaled[.01],
PlotRange -> pr
],
ops
];
minMask = ImageResize[minMask, baseDims];
(
MeanFilter[
Binarize[
sampleImage,
clipping
],
3
] + gapMask
)*minMask
]
I basically use a bunch of tricks with ParametricPlot masks to try to get an image to imprint. It doesn't really pick up details well:
testImg = ExampleData[{"TestImage", "Mandrill"}]
spiroglyph[testImg, .36, 25, {6, 2}]
It can also work for the negative of the image:
spiroglyph[
ExampleData[{"TestImage", "F16"}], .35, 40, {8, 5}, "Negative"]
And you can play with all the parameters to try to improve things:
spiroglyph[
ExampleData[{"TestImage", "F16"}], .32, 60, {10, 3}, "Negative",
ImageResolution -> 200]
Oh and here's Elvis:
elvis =
ImageTake[#, ImageDimensions[#][[1]]] &@
Import[
"http://www.gstatic.com/tv/thumb/persons/1382/1382_v9_ba.jpg"];
spiroglyph[elvis, .2, 85, {4, 2}]
And another example on a much simpler test case:
spiroglyph[
ImageCrop[#, {Min@ImageDimensions[#], Min@ImageDimensions[#]}] &@
Import["https://i.etsystatic.com/13221305/r/il/e04597/1390417240/il_\
570xN.1390417240_lnh7.jpg"],
35,
{5, 1}
]
-
Hello everyone I really want to make my own images, but I don't understand where to insert the code in the program! Write a sequence of actions for beginners – Ирун Глупопун Apr 02 '20 at 08:26







r[θ_] := (.05 + .02 Sin[20 θ]); ParametricPlot[{(.1 θ - r[θ]) {Cos[θ], Sin[θ]}, {(.1 θ + r[θ]) {Cos[θ], Sin[θ]}}}, {θ], 0, 22 \[Pi]}]– David G. Stork Dec 19 '18 at 06:37