0

I am getting these strange eigenvalues of this simple looking 4-dimensional matrix:

 mymatrix = {{1 - a, -((I Conjugate[b])/Sqrt[2]), b/Sqrt[
    2], -((I a)/2)}, {(I b)/Sqrt[2], a/2, 0, 0}, {Conjugate[b]/Sqrt[
    2], 0, a/2, 0}, {(I a)/2, 0, 0, 0}};
Eigenvalues[mymatrix]
    (**{a/2, Root[
  a^3 + (4 a - 6 a^2 - 8 b Conjugate[b]) #1 + (-8 + 4 a) #1^2 + 
    8 #1^3 &, 1], 
 Root[a^3 + (4 a - 6 a^2 - 8 b Conjugate[b]) #1 + (-8 + 4 a) #1^2 + 
    8 #1^3 &, 2], 
 Root[a^3 + (4 a - 6 a^2 - 8 b Conjugate[b]) #1 + (-8 + 4 a) #1^2 + 
    8 #1^3 &, 3]})

What to do with this Root[] stuff?

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
H. Kenan
  • 663
  • 6
  • 13

1 Answers1

0

The following works.

mymatrix = {{1 - a, -((I Conjugate[b])/Sqrt[2]), b/Sqrt[
2], -((I a)/2)}, {(I b)/Sqrt[2], a/2, 0, 0}, {Conjugate[b]/Sqrt[
2], 0, a/2, 0}, {(I a)/2, 0, 0, 0}};Eigenvalues[mymatrix]//ToRadicals

Addition. I don't see that way in How to work with Root objects as well as in the help to Root.

user64494
  • 26,149
  • 4
  • 27
  • 56