While you know how to put this altogether from scratch, I suspect that some will not be able to construct the confidence or prediction bands reliably in such a manner. If it is a reasonable assumption that the error variances are the same for all models, then just modifying the input data is about all that's necessary to get the desired output from NonlinearModelFit. (I make too many mistakes so I need to go that route.)
First, include in some dummy variables in the data:
(* Sample data using dummy variables:
1,0,0 => data from model 1
0,1,0 => data from model 2
0,0,1 => data from model 3 *)
data={{1, 0, 0, 0., -0.0988754}, {0, 1, 0, 0., 0.936639}, {0, 0, 1, 0., -0.168444}, {1, 0, 0, 0.025, -0.0201999}, {0, 1, 0, 0.025, 1.02862}, {0, 0, 1, 0.025, -0.0562009}, {1, 0, 0, 0.05, -0.0120367}, {0, 1, 0, 0.05, 0.870238}, {0, 0, 1, 0.05, -0.0936423}, {1, 0, 0, 0.075, -0.128804}, {0, 1, 0, 0.075, 0.985538}, {0, 0, 1, 0.075, 0.125768}, {1, 0, 0, 0.1, 0.078006}, {0, 1, 0, 0.1, 0.775311}, {0, 0, 1, 0.1, 0.0928273}, {1, 0, 0, 0.125, 0.121525}, {0, 1, 0, 0.125, 0.71475}, {0, 0, 1, 0.125, 0.0477607}, {1, 0, 0, 0.15, 0.115014}, {0, 1, 0, 0.15, 0.851672}, {0, 0, 1, 0.15, 0.0933949}, {1, 0, 0, 0.175, -0.0260633}, {0, 1, 0, 0.175, 0.721085}, {0, 0, 1, 0.175, 0.2533}, {1, 0, 0, 0.2, 0.0929319}, {0, 1, 0, 0.2, 0.741054}, {0, 0, 1, 0.2, 0.246308}, {1, 0, 0, 0.225, -0.121485}, {0, 1, 0, 0.225, 0.558944}, {0, 0, 1, 0.225, 0.180121}, {1, 0, 0, 0.25, 0.196925}, {0, 1, 0, 0.25, 0.739204}, {0, 0, 1, 0.25, 0.216802}, {1, 0, 0, 0.275, 0.00288085}, {0, 1, 0, 0.275, 0.531013}, {0, 0, 1, 0.275, 0.364702}, {1, 0, 0, 0.3, -0.0748257}, {0, 1, 0, 0.3, 0.452435}, {0, 0, 1, 0.3, 0.246644}, {1, 0, 0, 0.325, -0.102033}, {0, 1, 0, 0.325, 0.552273}, {0, 0, 1, 0.325, 0.307822}, {1, 0, 0, 0.35, 0.012419}, {0, 1, 0, 0.35, 0.493619}, {0, 0, 1, 0.35, 0.109975}, {1, 0, 0, 0.375, 0.174347}, {0, 1, 0, 0.375, 0.403849}, {0, 0, 1, 0.375, 0.640423}, {1, 0, 0, 0.4, 0.0267628}, {0, 1, 0, 0.4, 0.50906}, {0, 0, 1, 0.4, 0.249802}, {1, 0, 0, 0.425, 0.145036}, {0, 1, 0, 0.425, 0.401913}, {0, 0, 1, 0.425, 0.365026}, {1, 0, 0, 0.45, 0.0917381}, {0, 1, 0, 0.45, 0.452611}, {0, 0, 1, 0.45, 0.191856}, {1, 0, 0, 0.475, 0.05115}, {0, 1, 0, 0.475, 0.461663}, {0, 0, 1, 0.475, 0.370011}, {1, 0, 0, 0.5, 0.275475}, {0, 1, 0, 0.5, 0.20153}, {0, 0, 1, 0.5, 0.479379}, {1, 0, 0, 0.525, 0.184857}, {0, 1, 0, 0.525, 0.26697}, {0, 0, 1, 0.525, 0.586871}, {1, 0, 0, 0.55, 0.236133}, {0, 1, 0, 0.55, 0.379411}, {0, 0, 1, 0.55, 0.61064}, {1, 0, 0, 0.575, 0.241561}, {0, 1, 0, 0.575, 0.243509}, {0, 0, 1, 0.575, 0.508213}, {1, 0, 0, 0.6, 0.220454}, {0, 1, 0, 0.6, 0.118133}, {0, 0, 1, 0.6, 0.595092}, {1, 0, 0, 0.625, 0.12719}, {0, 1, 0, 0.625, 0.126479}, {0, 0, 1, 0.625, 0.644849}, {1, 0, 0, 0.65, 0.114451}, {0, 1, 0, 0.65, 0.144761}, {0, 0, 1, 0.65, 0.581061}, {1, 0, 0, 0.675, 0.197143}, {0, 1, 0, 0.675, 0.186537}, {0, 0, 1, 0.675, 0.705692}, {1, 0, 0, 0.7, 0.231923}, {0, 1, 0, 0.7, -0.0542245}, {0, 0, 1, 0.7, 0.939961}, {1, 0, 0, 0.725, 0.318287}, {0, 1, 0, 0.725, 0.0657639}, {0, 0, 1, 0.725, 0.609313}, {1, 0, 0, 0.75, 0.177536}, {0, 1, 0, 0.75, 0.0269016}, {0, 0, 1, 0.75, 0.741112}, {1, 0, 0, 0.775, 0.357059}, {0, 1, 0, 0.775, -0.191036}, {0, 0, 1, 0.775, 0.830267}, {1, 0, 0, 0.8, 0.188352}, {0, 1, 0, 0.8, -0.0579005}, {0, 0, 1, 0.8, 0.695232}, {1, 0, 0, 0.825, 0.271996}, {0, 1, 0, 0.825, -0.304167}, {0, 0, 1, 0.825, 0.832492}, {1, 0, 0, 0.85, 0.408437}, {0, 1, 0, 0.85, -0.0930686}, {0, 0, 1, 0.85, 0.717563}, {1, 0, 0, 0.875, 0.570663}, {0, 1, 0, 0.875, -0.286103}, {0, 0, 1, 0.875, 0.96456}, {1, 0, 0, 0.9, 0.340535}, {0, 1, 0, 0.9, -0.25579}, {0, 0, 1, 0.9, 0.672478}, {1, 0, 0, 0.925, 0.0811443}, {0, 1, 0, 0.925, -0.332707}, {0, 0, 1, 0.925, 0.841893}, {1, 0, 0, 0.95, 0.327199}, {0, 1, 0, 0.95, -0.43617}, {0, 0, 1, 0.95, 0.849182}, {1, 0, 0, 0.975, 0.359762}, {0, 1, 0, 0.975, -0.67714}, {0, 0, 1, 0.975, 0.950295}, {1, 0, 0, 1., 0.494625}, {0, 1, 0, 1., -0.533217}, {0, 0, 1, 1., 1.09384}};
(* Define equation using dummy variables *)
eqn[m1_, m2_, m3_, x_, a_, b_, c_, d_, e_, f_] :=
{m1, m2, m3}.{a x^2 + b x + c, d x^2 + e x + f,
1 - (a x^2 + b x + c) - (d x^2 + e x + f)}
(* Run regression *)
coeff = {a, b, c, d, e, f};
nlm = NonlinearModelFit[data, eqn[m1, m2, m3, x, a, b, c, d, e, f],
coeff, {m1, m2, m3, x}];
(* Get mean prediction bands *)
mpb1 = nlm["MeanPredictionBands"] /. {m1 -> 1, m2 -> 0, m3 -> 0};
mpb2 = nlm["MeanPredictionBands"] /. {m1 -> 0, m2 -> 1, m3 -> 0};
mpb3 = nlm["MeanPredictionBands"] /. {m1 -> 0, m2 -> 0, m3 -> 1};
(* Show data, fit, and mean prediction bands *)
Show[ListPlot[data[[All, {4, 5}]]],
Plot[{nlm[1, 0, 0, x], nlm[0, 1, 0, x], nlm[0, 0, 1, x]}, {x, 0, 1},
PlotStyle -> {Blue, Red, Green}],
Plot[{mpb1, mpb2, mpb3}, {x, 0, 1},
PlotStyle -> {Blue, Blue, Red, Red, Green, Green}]]

And this works even if the model is not a polynomial.
LogLikelihoodandFindMaximumfunctions would allow for potentially unequal variances. – JimB Mar 09 '19 at 15:21