0

I am trying to find a model with a Fourier basis for this data:

data = {{1, -0.5}, {2, -15}, {3, 30}, {4, 184.25}, {5, 
    2143.75}, {6, 6234.75}, {7, 11969.75}, {8, 16940.75}, {9, 
    20484.75}, {10, 23084.25}, {11, 24577.25}, {12, 26321.75}, {13, 
    29709.25}, {14, 36357.75}, {15, 40502.25}, {16, 38244.25}, {17, 
    30486.25}, {18, 19492.75}, {19, 13318.25}, {20, 12267.25}, {21, 
    12376.25}, {22, 12375.75}, {23, 12376.25}, {24, 12376.25}};

Help is greatly appreciated thanks!

Anton Antonov
  • 37,787
  • 3
  • 100
  • 178

2 Answers2

1

Is this what you wanted?

data = {{1, -0.5}, {2, -15}, {3, 30}, {4, 184.25}, {5, 
    2143.75}, {6, 6234.75}, {7, 11969.75}, {8, 16940.75}, {9, 
    20484.75}, {10, 23084.25}, {11, 24577.25}, {12, 26321.75}, {13, 
    29709.25}, {14, 36357.75}, {15, 40502.25}, {16, 38244.25}, {17, 
    30486.25}, {18, 19492.75}, {19, 13318.25}, {20, 12267.25}, {21, 
    12376.25}, {22, 12375.75}, {23, 12376.25}, {24, 12376.25}};

lm = LinearModelFit[data, x, x]

The answer is

FittedModel[7583.2 +732.805 x]

If yes, then you can read more about it here LinearModelFit

Anton Antonov
  • 37,787
  • 3
  • 100
  • 178
1

Although I think that this question is a duplicate of others (for example, this and this) it seems that applying the suggestions/code from those answers is not direct or trivial.

Here is a solution which I found with QRMon but redressed it as a NonlinearModelFit one.

bFuncs = Join[Table[Sin[i x/20], {i, 1, 60, 2}], Table[Cos[i x/20], {i, 0, 20, 2}]];

bs = Array[b, Length[bFuncs]];

nlm = NonlinearModelFit[data, bs.bFuncs, bs, x]

Show[ListPlot[data], Plot[nlm[x], {x, Min[data[[All, 1]]], Max[data[[All, 1]]]}], Frame -> True]

enter image description here

ListPlot[nlm["FitResiduals"], Filling -> Axis]

enter image description here

nlm["Function"][x]

(* 5669.1 + 1336.03 Cos[x/10] - 8003.44 Cos[x/5] - 
 2004.01 Cos[(3 x)/10] + 1462.08 Cos[(2 x)/5] + 1225.55 Cos[x/2] - 
 676.923 Cos[(3 x)/5] - 396.566 Cos[(7 x)/10] + 
 1900.68 Cos[(4 x)/5] + 164.913 Cos[(9 x)/10] - 1037.4 Cos[x] + 
 9867.23 Sin[x/20] + 8288.73 Sin[(3 x)/20] - 2577.54 Sin[x/4] - 
 3047.06 Sin[(7 x)/20] - 540.337 Sin[(9 x)/20] + 
 887.6 Sin[(11 x)/20] - 403.283 Sin[(13 x)/20] - 
 1435.52 Sin[(3 x)/4] + 1099.31 Sin[(17 x)/20] + 
 981.363 Sin[(19 x)/20] - 556.755 Sin[(21 x)/20] - 
 132.728 Sin[(23 x)/20] + 103.919 Sin[(5 x)/4] + 
 546.033 Sin[(27 x)/20] - 243.036 Sin[(29 x)/20] - 
 441.13 Sin[(31 x)/20] + 389.737 Sin[(33 x)/20] - 
 297.45 Sin[(7 x)/4] + 96.2562 Sin[(37 x)/20] + 
 285.294 Sin[(39 x)/20] - 343.174 Sin[(41 x)/20] + 
 194.906 Sin[(43 x)/20] - 74.1913 Sin[(9 x)/4] + 
 37.3024 Sin[(47 x)/20] + 108.943 Sin[(49 x)/20] - 
 308.276 Sin[(51 x)/20] + 337.058 Sin[(53 x)/20] - 
 127.753 Sin[(11 x)/4] + 87.3725 Sin[(57 x)/20] - 
 29.0636 Sin[(59 x)/20] *)
Anton Antonov
  • 37,787
  • 3
  • 100
  • 178