Let's say I have two functions $f(x,y,z), g(x,y,z)$. I would like to know the probability that $f(x,y,z) < g(x,y,z)$ over some defined, numerical ranges of $x, y, z$.
Any thoughts on how to do it besides nested for-loops?
P.S. I have more than 3 variables, but for simplicity let's assume I only have $x,y,z$.
Edit:
dL = 1; rL = 1; c = 0;
f[dH_, rH_, α_, β_, γ_,
b_] := -(1/
2) (-1 + β) Sqrt[-(((-1 + α) (dH (-1 + β) - \
β (1 + rH γ)^2))/(b^2 dH (-1 + β)))] +
1/2 β Sqrt[(α (dH -
dH β + β (1 + rH γ)^2))/(
b^2 dH^2 β)];
g[dH_, rH_, α_, β_, γ_, b_] := 1/(
2 (b + b (-1 + dH) β));
reg1 = ImplicitRegion[
0 <= α <= 1 && 0 <= β <= 1 && 0 <= b <= 1 &&
0 <= γ <= 1 && 1 <= dH <= 5 && 1 <= rH <= 5, {dH,
rH, α, β, γ, b}];
reg2 = ImplicitRegion[
f[dH, rH, α, β, γ, b] >
g[dH, rH, α, β, γ, b] && 0 <= α <= 1 &&
0 <= β <= 1 && 0 <= b <= 1 && 0 <= γ <= 1 &&
1 <= dH <= 5 && 1 <= rH <= 5, {dH,
rH, α, β, γ, b}];
prob = RegionMeasure[reg2]/RegionMeasure[reg1] // N (* Takes forever to calculate RegionMeasure[reg2] *)
NIntegrate[1, {dH, rH, α, β, γ, b} ∈
reg1] (* 16 *)
NIntegrate[1, {dH, rH, α, β, γ, b} ∈
reg2, Method -> "AdaptiveQuasiMonteCarlo"] (* returns the function call. *)

Integrate[Boole[inequalities], {x, ...}, ...]orreg = ImplicitRegion[inequalities, {x, y, z}]; Integrate[1, {x, y, z} \[Element] reg]. An example of your inequalities would help. – Carl Woll Oct 05 '19 at 21:49NIntegrate. https://reference.wolfram.com/language/tutorial/NIntegrateIntegrationStrategies.html The Probability is equal to the volume $\Omega_{f<g}$ divided by the total volume $\Omega$, that is $p=\Omega_{f<g}/\Omega$, where $\Omega$ can be expressed as a multi- (3 in your example) dimensional integral. – yarchik Oct 05 '19 at 22:00AdaptiveMonteCarloandAdaptiveQuasiMonteCarloare goodNIntegrateMethods to try (see CarlWolls comment above). – Thies Heidecke Oct 06 '19 at 11:36NIntegratewithAdaptiveQuasiMonteCarlo,AdaptiveMonteCarlo,MonteCarlobut with no luck. Mathematica just returns the function call. I'll update the question with specific inequalities. – John Smith Oct 06 '19 at 23:21