The system can be solved in closed-form using RSolve
Clear["Global`*"]
eqns = {a[n] == (a[n - 1] - 0.45 a[n - 1]) + 0.3 b[n - 1],
b[n] == (b[n - 1] - 0.3 b[n - 1]) + 0.45 a[n - 1],
a[0] == 450, b[0] == 450} // Rationalize;
sol = RSolve[eqns, {a, b}, n][[1]]
(* {a -> Function[{n}, 45 2^(1 - 2 n) (1 + 2^(2 + 2 n))],
b -> Function[{n}, 45 2^(1 - 2 n) (-1 + 3 2^(1 + 2 n))]} *)
Verifying that the solutions satisfy the equations
And @@ (eqns /. sol // Simplify)
(* True *)
The functions asymptotically approach
Limit[{a[n], b[n]} /. sol, n -> Infinity]
(* {360, 540} *)
N[{a[#], b[#]} /. sol] & /@ Range [0, 10]
(* {{450., 450.}, {382.5, 517.5}, {365.625, 534.375}, {361.406,
538.594}, {360.352, 539.648}, {360.088, 539.912}, {360.022,
539.978}, {360.005, 539.995}, {360.001, 539.999}, {360., 540.}, {360.,
540.}} *)
Plot[Evaluate[{b[n], a[n]} /. sol], {n, 0, 15},
PlotLegends -> Placed[{b[n], a[n]}, {0.5, 0.5}]]

Alternatively, using FixedPointList
FixedPointList[
{(#[[1]] - 0.45 #[[1]]) + 0.3 #[[2]],
(#[[2]] - 0.3 #[[2]]) + 0.45 #[[1]]} &,
{450, 450}]
(* {{450, 450}, {382.5, 517.5}, {365.625, 534.375}, {361.406, 538.594}, {360.352,
539.648}, {360.088, 539.912}, {360.022, 539.978}, {360.005,
539.995}, {360.001, 539.999}, {360., 540.}, {360., 540.}, {360.,
540.}, {360., 540.}, {360., 540.}, {360., 540.}, {360., 540.}, {360.,
540.}, {360., 540.}, {360., 540.}, {360., 540.}, {360., 540.}, {360.,
540.}, {360., 540.}, {360., 540.}, {360., 540.}, {360., 540.}, {360., 540.}} *)