Clear["Global`*"]
f[s_] = 1 - Sin[Pi Gamma[s]/s]/Sin[Pi/s];
Since you are interested in integral roots
sol = s /. Solve[{f[s] == 0, 2 <= s < 100}, s, Integers]
{* {2, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97} *)
The integral roots are prime
And @@ PrimeQ[sol]
(* True *)
These are all of the primes in the interval
Rest@sol == Prime@Range[Length@sol - 1]
(* True *)
Rest@sol == NestList[NextPrime, 2, Length@sol - 2]
(* True *)
EDIT: To find the real roots use high precision for calculations, then reduce the precision for display.
solr = NSolve[{f[s] == 0, 10 < s < 12}, s, WorkingPrecision -> 100,
VerifySolutions -> True];
Verifying the solutions
And @@ (f[s] == 0 /. solr)
(* True *)
The roots are dense
Length@solr
(* 1490 *)
Nonetheless, NSolve misses the integral root.
solr[[740 ;; 750]] // N
(* {{s -> 10.9867}, {s -> 10.9912}, {s -> 10.9924}, {s -> 10.9929}, {s ->
10.9968}, {s -> 10.9985}, {s -> 11.0013}, {s -> 11.0015}, {s ->
11.0024}, {s -> 11.0032}, {s -> 11.0033}} *)
f[11]
(* 0 *)
Combining the real and integral solutions
sol = Join[solr,
Solve[{f[s] == 0, 10 < s < 12}, s, Integers]] //
SortBy[#, Last] &;
sol[[740 ;; 750]] /. x_Real :> N[x]
(* {{s -> 10.9867}, {s -> 10.9912}, {s -> 10.9924}, {s -> 10.9929}, {s ->
10.9968}, {s -> 10.9985}, {s -> 11}, {s -> 11.0013}, {s -> 11.0015}, {s ->
11.0024}, {s -> 11.0032}} *)
Alternatively, do a search with FindRoot
solf = Union[
FindRoot[f[s] == 0, {s, #},
WorkingPrecision -> 100] & /@
Range[10, 12, 10^-4],
SameTest ->
(Abs[#1[[1, -1]] - #2[[1, -1]]] < 10^-4 &)];
This is much slower but identifies many more roots
Length@solf
(* 12440 *)
including the integral root
solf[[6200 ;; 6205]] // N
(* {{s -> 10.9996}, {s -> 10.9998}, {s -> 11.}, {s -> 11.0002}, {s ->
11.0003}, {s -> 11.0005}} *)
solf[[6202]]
(* {s -> 11.000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000} *)
NSolve[{1 == Sin[Pi Gamma[s]/s]/Sin[Pi/s], 10 < s < 12}, s, Reals,WorkingPrecision->10]? – Ulrich Neumann Oct 24 '19 at 21:06Solve[{1 == Sin[Pi Gamma[s]/s]/Sin[Pi/s], 10 < s < 12}, s, Integers]– Bob Hanlon Oct 24 '19 at 22:16