0

I have tried to solve this equation $2^{-2 ^{2^{-x}}}=2$ using

FindInstance[2^(-2^(2^(-x))) == 2, x, Reals]

The result is

{{x -> Root[{-2 Log[2]^2 + 2^(1 + #1) Log[2]^2 #1 &, 0.64118574450498598449}]}}

then find in value of x^(1/x)

I understand that the result is 1/2 but I can't prove it.

What does the # in the result mean?

Rohit Namjoshi
  • 10,212
  • 6
  • 16
  • 67
zeros
  • 2,263
  • 1
  • 14
  • 18

1 Answers1

3

For positive real x, x^(1/x) == 1/2 is equivalent to x == 1/2^x:

x == 1/2^x /.
   {x -> Root[
     {-2 Log[2]^2 + 2^(1 + #1) Log[2]^2 #1 &, 
      0.64118574450498598449}
     ]} // FullSimplify

(*  True  *)

Or you can get numerical evidence:

N[
 x^(1/x) /.
  {x -> Root[
     {-2 Log[2]^2 + 2^(1 + #1) Log[2]^2 #1 &, 
      0.64118574450498598449}]},
 10]  (* number of digits of precision to compute *)

(*  0.5000000000  *)
Michael E2
  • 235,386
  • 17
  • 334
  • 747