Given the two sets of $2N$ equations
Eu[n_, i_] := ((I*k)/(2*Pi))*Subscript[λu, i][t] - Sum[If[j != i, Coth[(Subscript[λu, j][t] - Subscript[λu, i][t])/2], 0], {j, 1, n}] + (1/2)*Sum[Tanh[(Subscript[λt, j][t] - Subscript[λu, i][t] - mt)/2] + Tanh[(Subscript[λt, j][t] -Subscript[λu, i][t] + mu)/2], {j, 1, n}];
Et[n_, i_] := (-((I*k)/(2*Pi)))*Subscript[λt, i][t] - Sum[If[j != i, Coth[(Subscript[λt, j][t] - Subscript[λt, i][t])/2], 0], {j, 1, n}] + (1/2)*Sum[Tanh[(Subscript[λu, j][t] - Subscript[λt, i][t] - mu)/2] + Tanh[(Subscript[λu, j][t] - Subscript[λt, i][t] + mt)/2], {j, 1, n}];
I need to solve the following system of ODE
Eqs[n_] := Flatten[Table[{τu*D[Subscript[λu, i][t], t] == Eu[n, i], τt*D[Subscript[λt, i][t], t] == Et[n, i]}, {i, n}]];
with the following initial values
ICs[n_] := Flatten[Table[{Subscript[λu, i][0] == 0.1*i, Subscript[λt, i][0] == 0.1*i}, {i, n}]];
The functions to determine are the following
Vars[n_] := Join[Table[Subscript[λu, i], {i, n}], Table[Subscript[λt, i], {i, n}]];
In particular I need to determine numerically late solution (i.e. solution for $t$ enough big such that the Eu and Et value is small) of the initial value problem for some large value of $N$ (the larger the better), say at least $N \gtrsim 200$ for certain value of the other parameters $k$, $\tau_u$, $\tau_t$, $m_u$ and $m_t$. So I used
n = 200;
k = 1;
τu = 1;
τt = 1;
mu = 2.;
mt = -2.5;
sol = NDSolveValue[Join[Eqs[n], ICs[n]], Vars[n], {t, 0, 1000}];
What I get is the following message
NDSolveValue::ntdv: Cannot solve to find an explicit formula for the derivatives. Consider using the option Method->{"EquationSimplification"->"Residual"}.
However if I add the option as it suggest I get
NDSolveValue::mconly: For the method IDA, only machine real code is available. Unable to continue with complex values or beyond floating-point exceptions.
NDSolveValue::icfail: Unable to find initial conditions that satisfy the residual function within specified tolerances. Try giving initial conditions for both values and derivatives of the functions.
Notice that all works from the beginning if i let n=100 or so. The problem is that I need the result for larger values of $N$.
Can you suggest me something?

NDSolveparallelizes automatically when solving certain ODE system, but it's not (yet) clear when it can. ) – xzczd Oct 30 '19 at 10:44