I am dealing with a complicated equation,involving trigonometric expressions, and I would like to solve it numerically (I gave up trying to obtain a closed form solution).
The equation:
NSolve[f[x] == 1, x]
Nevertheless, NSolve seems not being able to find a solution, it runs endlessly. However, using ContourPlot, I can obtain a graph of the existing solutions within a few seconds:
ContourPlot[f[x]== 1, {x, -3, 3}, {y, -2, 2}]
My question is, how can I extract these solutions from the ContourPlot? or, is there a quick way to obtain these solutions ? (at least as quick as using a ContourPlot...)
It must be a common question, however I have not seen it yet. So if it turns out it is a duplicate please let me know and I will delete my question.
Any remark or observation is always appreciated, thanks.
EDIT:
For completeness, I add my function $f(x)$, although it is very messy and lengthy..
f[x_]:= -((3 (-43 - 48 x - 18 x^2 +
2 Sqrt[3] (3 + 2 x) Sqrt[8 + 6 x + 3 x^2]
Cos[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] + (8 + 6 x + 3 x^2) Cos[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
18 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
12 x Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
8 Sqrt[3]
Sin[2/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
6 Sqrt[3]
x Sin[2/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
3 Sqrt[3]
x^2 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[
1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]]))/(3705 + 7920 x + 7164 x^2 + 3240 x^3 +
630 x^4 -
12 Sqrt[3] Sqrt[
8 + 6 x + 3 x^2] (51 + 88 x + 57 x^2 + 14 x^3) Cos[
1/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
2 (776 + 1542 x + 1347 x^2 + 612 x^3 + 126 x^4) Cos[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
192 Sqrt[3] Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
272 Sqrt[3] x Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
168 Sqrt[3] x^2 Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
48 Sqrt[3] x^3 Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
64 Cos[4/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
96 x Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
84 x^2 Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
36 x^3 Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
9 x^4 Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
1836 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
3168 x Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
2052 x^2 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
504 x^3 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
1552 Sqrt[3]
Sin[2/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
3084 Sqrt[3]
x Sin[2/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
2694 Sqrt[3]
x^2 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
1224 Sqrt[3]
x^3 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
252 Sqrt[3]
x^4 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
64 Sqrt[3]
Sin[4/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
96 Sqrt[3]
x Sin[4/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
84 Sqrt[3]
x^2 Sin[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
36 Sqrt[3]
x^3 Sin[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
9 Sqrt[3]
x^4 Sin[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]])) - (3 (-19 - 24 x - 18 x^2 +
2 Sqrt[3] (1 + 2 x) Sqrt[8 + 6 x + 3 x^2]
Cos[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] + (8 + 6 x + 3 x^2) Cos[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
6 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
12 x Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
8 Sqrt[3]
Sin[2/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
6 Sqrt[3]
x Sin[2/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
3 Sqrt[3]
x^2 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]]))/(681 + 2016 x + 2844 x^2 + 1800 x^3 +
630 x^4 -
12 Sqrt[3] Sqrt[
8 + 6 x + 3 x^2] (9 + 28 x + 27 x^2 + 14 x^3) Cos[
1/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
2 (200 + 534 x + 699 x^2 + 396 x^3 + 126 x^4) Cos[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
64 Sqrt[3] Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
176 Sqrt[3] x Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
120 Sqrt[3] x^2 Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
48 Sqrt[3] x^3 Sqrt[8 + 6 x + 3 x^2]
Cos[Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
64 Cos[4/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
96 x Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
84 x^2 Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
36 x^3 Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
9 x^4 Cos[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
324 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
1008 x Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
972 x^2 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
504 x^3 Sqrt[8 + 6 x + 3 x^2]
Sin[1/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
400 Sqrt[3]
Sin[2/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
1068 Sqrt[3]
x Sin[2/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
1398 Sqrt[3]
x^2 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
792 Sqrt[3]
x^3 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] -
252 Sqrt[3]
x^4 Sin[
2/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
64 Sqrt[3]
Sin[4/3 Arg[
10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
96 Sqrt[3]
x Sin[4/
3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
84 Sqrt[3]
x^2 Sin[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
36 Sqrt[3]
x^3 Sin[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]] +
9 Sqrt[3]
x^4 Sin[
4/3 Arg[10 + 2 x - 12 x^2 - 4 x^3 + (
2 I Sqrt[1373 + 4338 x + 7353 x^2 + 5184 x^3 + 1296 x^4])/(
3 Sqrt[3])]])

