For example, the following is a $12\times 12$ symmetric matrix. Det and Inverse take too much time and don't even work on my computer. I don't consider the numerical case.
mat = {
{a[1, 1], 0, 0, a[1, 4], 0, 0, a[1, 7], 0, 0, a[1, 10], 0, 0},
{0, a[1, 1], 0, 0, a[1, 4], 0, 0, a[1, 7], 0, 0, a[1, 10], 0},
{0, 0, a[3, 3], 0, 0, a[1, 4], 0, 0, a[1, 7], 0, 0, a[1, 10]},
{a[1, 4], 0, 0, a[4, 4], 0, 0, a[4, 7], 0, 0, a[4, 10], 0, 0},
{0, a[1, 4], 0, 0, a[4, 4], 0, 0, a[4, 7], 0, 0, a[4, 10], 0},
{0, 0, a[1, 4], 0, 0, a[6, 6], 0, 0, a[4, 7], 0, 0, a[4, 10]},
{a[1, 7], 0, 0, a[4, 7], 0, 0, a[7, 7], a[7, 8], a[7, 9], a[7, 10], 0, 0},
{0, a[1, 7], 0, 0, a[4, 7], 0, a[7, 8], a[8, 8], a[8, 9], 0, a[7, 10], 0},
{0, 0, a[1, 7], 0, 0, a[4, 7], a[7, 9], a[8, 9], a[9, 9], 0, 0, a[7, 10]},
{a[1, 10], 0, 0, a[4, 10], 0, 0, a[7, 10], 0, 0, a[10, 10], a[10, 11], a[10, 12]},
{0, a[1, 10], 0, 0, a[4, 10], 0, 0, a[7, 10], 0, a[10, 11], a[11, 11], a[11, 12]},
{0, 0, a[1, 10], 0, 0, a[4, 10], 0, 0, a[7, 10], a[10, 12], a[11, 12], a[12, 12]}
}
Method -> "OneStepRowReduction"but it will take a considerable amount of memory. – Daniel Lichtblau Mar 12 '13 at 02:36