If you change the boundary condition for $u(\infty, t) = 0$ instead of $u(-\infty,t)$ then we have a beautiful solution using the Laplace transform
Clear[u, t, y]
eqn = D[u[y, t], t] - nu D[u[y, t], {y, 2}] == 0;
ic = {u[y, 0] == 0};
bc = {mu Derivative[1, 0][u][0, t] == tau};
teqn = LaplaceTransform[{eqn, bc}, t, s] /. Rule @@@ ic;
tsol = u[y, t] /. First@DSolve[teqn /. HoldPattern@LaplaceTransform[a_, __] :> a, u[y, t], y]
so we obtain
(*-((E^(-((Sqrt[s] y)/Sqrt[nu])) Sqrt[nu] tau)/(mu s^(3/2))) + 2 C[1] Cosh[(Sqrt[s] y)/Sqrt[nu]]*)
or
$$
U(y,s) = 2 c_1 \cosh \left(\frac{\sqrt{s} y}{\sqrt{\nu }}\right)-\frac{\sqrt{\nu } \tau e^{-\frac{\sqrt{s} y}{\sqrt{\nu }}}}{\mu s^{3/2}}
$$
but as $y\to\infty$ the solution will remain $0$ then $c_1 = 0$ so we have
$$
U(y,s) = -\frac{\sqrt{\nu } \tau e^{-\frac{\sqrt{s} y}{\sqrt{\nu }}}}{\mu s^{3/2}}
$$
Finally
InverseLaplaceTransform[tsol /. {C[1] -> 0}, s, t] // FullSimplify
gives
$$
u(y,t) = \frac{\tau \left(y \text{erfc}\left(\frac{y}{2 \sqrt{\nu t}}\right)-\frac{2 \sqrt{\nu } \sqrt{t} e^{-\frac{y^2}{4 \nu t}}}{\sqrt{\pi }}\right)}{\mu }
$$
MathematicaI get in response only the task itself, not correct answer – Eikthyrnir Dec 23 '19 at 21:24NDSolveinstead. – MarcoB Dec 23 '19 at 21:54-Infinityto some finite number. But even so, I can't solve it usingmathematica– Eikthyrnir Dec 23 '19 at 22:04