I want to set limits of integration in cylindrical polar coordinates for a function $f(r,\theta,z)$ over a region bounded below by the plane $z=0$, laterally by the circular cylinder $x^2+(y-1)^2=1$ and above by the paraboloid $z=x^2+y^2.$ I need complete procedure. Because i am totally new to the mathematica.
Asked
Active
Viewed 496 times
6
2 Answers
6
Transform your conditions to cylindrical coordinates
cond =
x^2 + (y - 1)^2 < 1 &&0 < z < x^2 + y^2 /. {x -> r Cos[φ], y -> r Sin[φ]} //
FullSimplify[#, {r > 0, -Pi < φ < Pi}] &
(*r < 2 Sin[φ] && 0 < z < r^2*)
to get the integration limits!
The first condition (remember r > 0) implies 0 < φ < Pi.
The integration limits follow to
{φ, 0, Pi}, {r, 0, 2 Sin[φ]}, {z, 0, r^2}
Checking the results:
Volume of the cartesian region:
ImplicitRegion[x^2 + (y - 1)^2 < 1 && 0 < z < x^2 + y^2, {x, y, z}] // Volume
(*3Pi/2*)
equals
Integrate[r, {φ, 0, Pi}, {r, 0, 2 Sin[φ]}, {z, 0,r^2}]
(* 3Pi/2*)
That's it. Hope it helps.
m_goldberg
- 107,779
- 16
- 103
- 257
Ulrich Neumann
- 53,729
- 2
- 23
- 55
4
You can visualize the region of integration as follows if specified in rectangular / Cartesian coordinates. I am looking for a way to specify in cylindrical to the plot directly and will update when I find it.
With[{
Δ=0.1
},
RegionPlot3D[And[
x^2+(y-1)^2<=1,
z<=x^2+y^2,
z>=0
],
{x,-1-Δ,1+Δ},
{y,0-Δ,2+Δ},
{z,0-Δ,4+Δ},
Mesh->10,
MeshFunctions->{#3&},
PlotStyle->Directive[Opacity[0.5],Yellow],
MeshShading->{Red,Automatic},
PlotPoints->150,
PlotTheme->"Detailed",
AxesLabel->Automatic
]
]
ClearAll[getCartesian,getCylindrical];
getCartesian[field_]:=FullSimplify@TransformedField["Cylindrical"->"Cartesian",field,{r,θ,\[ScriptZ]}->{x,y,z}];
getCylindrical[field_]:=FullSimplify@TransformedField["Cartesian"->"Cylindrical",field,{x,y,z}->{r,θ,\[ScriptZ]}];
getCylindrical/@And[
x^2+(y-1)^2<=1,
z<=x^2+y^2,
z>=0
]
r^2 <= 2 r Sin[θ] && [ScriptZ] <= r^2 && [ScriptZ] >= 0
Now you can use this transformation function to directly specify the conditions in cylindrical coordinates and it will be plotted.
With[{
Δ=0.1
},
RegionPlot3D[Evaluate[getCartesian/@And[
r^2<=2r Sin[θ],
\[ScriptZ]<=r^2,
\[ScriptZ]>=0
]],
{x,-1-Δ,1+Δ},
{y,0-Δ,2+Δ},
{z,0-Δ,4+Δ},
Mesh->10,
MeshFunctions->{#3&},
PlotStyle->Directive[Opacity[0.5],Yellow],
MeshShading->{Red,Automatic},
PlotPoints->150,
PlotTheme->"Detailed",
AxesLabel->Automatic
]
]
user13892
- 9,375
- 1
- 13
- 41
-
Brother how can I learn mathematica, any suggestion about books, videos etc. I really want to learn, but I have no Idea – Noor Aslam Jan 26 '20 at 14:41
-
@NoorAslam best book for beginners: https://mathematica.stackexchange.com/questions/16485/are-you-interested-in-purchasing-david-wagners-power-programming-with-mathemat – user13892 Jan 26 '20 at 15:14
-
Sir the book you recommended is difficult, can you recommend any other book please! – Noor Aslam Feb 03 '20 at 13:46
-
@NoorAslam https://www.wolfram.com/language/elementary-introduction/2nd-ed/ – user13892 Feb 09 '20 at 13:38
ContourPlot3D[{x^2 + (y - 1)^2 == 1, z == x^2 + y^2, z == 0}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]– J. M.'s missing motivation Jan 26 '20 at 11:260 <= z <= x^2+y^2and not the opposite? -- Also look up and try outRegionPlot3Din addition toContourPlot3D. – Michael E2 Jan 26 '20 at 11:56