I have taken your equation and tidied it up by getting rid of the subscripts. (I do not have the ability to do Greek letters on this computer - can someone edit and improve further ?)
eqn = D[Subscript[X, 1, 1][Subscript[T, 0]], {Subscript[T, 0], 2}] +
Subscript[ω,
1]^2 Subscript[X, 1, 1][Subscript[T, 0]] == -Subscript[c, 1,
2] (E^(2 I Subscript[ω, 1] Subscript[T, 0]) Subscript[A,
1]^2 + Subscript[A, 1] Subscript[
\!\(\*OverscriptBox[\(A\), \(_\)]\), 1]) -
Subscript[c, 1,
3] (E^(I (Subscript[ω, 1] + Subscript[ω,
2]) Subscript[T, 0]) Subscript[A, 1] Subscript[
A, 2] +
E^(I (Subscript[ω, 1] - Subscript[ω,
2]) Subscript[T, 0]) Subscript[A, 1] Subscript[
\!\(\*OverscriptBox[\(A\), \(_\)]\), 2]) -
0.5 Subscript[c, 1, 1] Subscript[A,
1] (E^(I (Subscript[ω, 1] + p) Subscript[T, 0]) + E^(
I (Subscript[ω, 1] - p) Subscript[T, 0])) -
Subscript[c, 1,
4] (E^(2 I Subscript[ω, 2] Subscript[T,
0]) Subscript[A,
2]^2 + Subscript[A, 2] Subscript[
\!\(\*OverscriptBox[\(A\), \(_\)]\), 2])
Here are some substitutions
subs = {Subscript[X, 1, 1] -> x11,
Subscript[X, 1, 1]^′′ -> x11'',
Subscript[c, 1, 1] -> c11, Subscript[c, 1, 2] -> c12,
Subscript[c, 1, 3] -> c13, Subscript[c, 1, 4] -> c14,
Subscript[ω, 1] -> ω1,
Subscript[ω, 2] -> ω2, Subscript[A, 1] -> a1,
Subscript[A, 2] -> a2, Subscript[
\!\(\*OverscriptBox[\(A\), \(_\)]\), 1] -> ab1, Subscript[
\!\(\*OverscriptBox[\(A\), \(_\)]\), 2] -> ab2, Subscript[T, 0] -> t};
Now we replace the 0.5 by rationalising and effect the substitutions.
eqn1 = Rationalize[ eqn] /. subs
giving:
ω1^2 x11[t] + (x11^′′)[
t] == -c12 (a1 ab1 + a1^2 E^(2 I t ω1)) -
1/2 a1 c11 (E^(I t (-p + ω1)) + E^(I t (p + ω1))) -
c14 (a2 ab2 + a2^2 E^(2 I t ω2)) -
c13 (a1 ab2 E^(I t (ω1 - ω2)) +
a1 a2 E^(I t (ω1 + ω2)))
Which I can see is a second order differential equation with a complex forcing. We can solve and simplify by doing
sol =Simplify[DSolve[eqn1, x11[t], t]]
The output is long
{{x11[t] -> (E^(-I t (p + 2 ω1 - ω2)) (4 a1^2 c12 E^(
I t (p + 4 ω1 - ω2))
p (p^2 - 4 ω1^2) ω2 (4 ω1^4 -
17 ω1^2 ω2^2 + 4 ω2^4) +
6 a1 (ω1^2 -
4 ω2^2) (2 a2 c13 E^(I t (p + 3 ω1))
p ω1^2 (p^2 -
4 ω1^2) (2 ω1 - ω2) + (2 ω1 \
+ ω2) (-2 ab2 c13 E^(I t (p + 3 ω1 - 2 ω2))
p ω1^2 (p^2 - 4 ω1^2) +
E^(I t (2 ω1 - ω2)) (c11 E^(
I t ω1) ω1^2 (p + E^(2 I p t) p +
2 ω1 - 2 E^(2 I p t) ω1) -
2 ab1 c12 E^(I p t)
p (p^2 -
4 ω1^2)) (2 ω1 - ω2) \
ω2)) -
6 E^(I t (p + ω1 - ω2))
p (p^2 -
4 ω1^2) ω2 (4 ω1^2 - ω2^2) (2 \
a2^2 c14 E^(I t (ω1 + 2 ω2)) ω1^2 +
2 a2 ab2 c14 E^(
I t ω1) (ω1^2 -
4 ω2^2) - ω1^2 (ω1^2 -
4 ω2^2) ((1 + E^(2 I t ω1)) C[1] -
I (-1 + E^(2 I t ω1)) C[2]))))/(12 p (p -
2 ω1) ω1^2 (p + 2 ω1) (ω1 -
2 ω2) (2 ω1 - ω2) ω2 (2 ω1 \
+ ω2) (ω1 + 2 ω2))}}
We can make some progress by looking at the real and imaginary parts seperately
FullSimplify[ComplexExpand[Re[sol]]]
giving
{{x11[t] -> -((a1 ab1 c12 + a2 ab2 c14)/ω1^2) +
C[1] Cos[t ω1] + (a1^2 c12 Cos[2 t ω1])/(
3 ω1^2) - (
a2^2 c14 Cos[2 t ω2])/(ω1^2 - 4 ω2^2) +
C[2] Sin[t ω1] +
a1 (-((ab2 c13 Cos[t (ω1 - ω2)])/(
2 ω1 ω2 - ω2^2)) + (
a2 c13 Cos[t (ω1 + ω2)])/(
2 ω1 ω2 + ω2^2) + (c11 (p Cos[p t] Cos[
t ω1] +
2 ω1 Sin[p t] Sin[t ω1]))/(p^3 -
4 p ω1^2))}}
Similarly for the imaginary part
FullSimplify[ComplexExpand[Im[sol]]]
giving
{{0 -> -((2 a1 c11 ω1 Cos[t ω1] Sin[p t])/(
p^3 - 4 p ω1^2)) + (a1 c11 Cos[p t] Sin[t ω1])/(
p^2 - 4 ω1^2) + ((2 ω1 + ω2) (a1 \
(ω1^2 -
4 ω2^2) (a1 c12 (2 ω1 - ω2) \
ω2 Sin[2 t ω1] -
3 ab2 c13 ω1^2 Sin[t (ω1 - ω2)]) +
3 a2^2 c14 ω1^2 ω2 (-2 ω1 + ω2) \
Sin[2 t ω2]) +
3 a1 a2 c13 ω1^2 (ω1 -
2 ω2) (2 ω1 - ω2) (ω1 +
2 ω2) Sin[
t (ω1 + ω2)])/(3 ω1^2 (4 ω1^4 \
ω2 - 17 ω1^2 ω2^3 + 4 ω2^5))}}
There is no reason for this to be more simple. Perhaps putting in some initial conditions would help.
Perhaps you just want the steady state solution without the starting transients?
I note that your forcing term is a sum of forces. Perhaps it would be worthwhile looking at the response due to each term taken separately. The solution could then be found by superposition.
I just had a go at doing a FullSimplify on the solution. This looks a bit better.
{{x11[t] -> -((a1 ab1 c12)/ω1^2) + (
a1^2 c12 E^(2 I t ω1))/(3 ω1^2) + (
a1 c13 E^(
I t (ω1 - ω2)) (a2 E^(
2 I t ω2) (-2 ω1 + ω2) +
ab2 (2 ω1 + ω2)))/(-4 ω1^2 ω2 + \
ω2^3) +
a2 c14 (-(ab2/ω1^2) - (
a2 E^(2 I t ω2))/(ω1^2 - 4 ω2^2)) +
C[1] Cos[t ω1] + (
a1 c11 E^(I t ω1) (p Cos[p t] - 2 I ω1 Sin[p t]))/(
p^3 - 4 p ω1^2) + C[2] Sin[t ω1]}}