I want to obtain the position x[t], solution of dx/dt=v and v the Orstein-Ulhenbeck process and use this x[t] in the cartesian coordinate definition of a stochastic spiral x_1(t)=tcos(t+x(t)) , x_2(t)=tsin(t+x(t)). I want to extract x[t] from the whole process vwin to pass it on to the process x12. Any Help?
the code I have is
{a, b} = {-1, 0.1};
vwin = ItoProcess[{\[DifferentialD]v[t] == -100*
v[t] \[DifferentialD]t + \[DifferentialD]w[
t], \[DifferentialD]x[t] == v[t] \[DifferentialD]t}, {v[t],
x[t]}, {{v, x}, {2, 1}}, t, w \[Distributed] WienerProcess[]];
RandomFunction[win, {0., 2., 0.001}];
ListLinePlot[%, Filling -> Axis]
X12 = TransformedProcess[{t*Cos[a*t + b*x[t]],
t*Sin[a*t + b*x[t]]}, {x \[Distributed] vwin}, t];
X12D = RandomFunction[X12, {0, 1.3, 0.005}, 30];
ListLinePlot[X12D["ValueList"], PlotRange -> All]

ItoProcess, would be nice to know – Chris K Apr 12 '20 at 15:37