Easy, differentiate your equation with respect to $a$:
$$\frac{\mathrm{d} t}{\mathrm{d} a} = \frac{1}{H_0} \frac{1}{\sqrt{\Omega_{r,0}a^{-2} + \Omega_{m,0}a^{-1}+\Omega_{\Lambda,0}a^2 + (1-\Omega_0)}}.$$
Now you have an autonomous differential equation for $a(t)$:
$$ \frac{1}{H_0}\frac{\mathrm{d} a(t)}{\mathrm{d} t} = \sqrt{\Omega_{r,0}a^{-2} + \Omega_{m,0}a^{-1}+\Omega_{\Lambda,0}a^2 + (1-\Omega_0)}.$$
eq=1/Subscript[H, 0] a'[t]==Sqrt[Subscript[Ω, m]/a[t]+Subscript[Ω, Λ] a[t]^2];
DSolve[eq,a[t],t]
(*{{a[t]->((-(1/2))^(2/3) E^(-(C[1]+t Subscript[H, 0]) Sqrt[Subscript[Ω, Λ]]) (E^(3 (C[1]+t Subscript[H, 0]) Sqrt[Subscript[Ω, Λ]])-Subscript[Ω, m] Subscript[Ω, Λ])^(2/3))/Subsuperscript[Ω, Λ, 2/3]},
{a[t]->(E^(-(C[1]+t Subscript[H, 0]) Sqrt[Subscript[Ω, Λ]]) (E^(3 (C[1]+t Subscript[H, 0]) Sqrt[Subscript[Ω, Λ]])-Subscript[Ω, m] Subscript[Ω, Λ])^(2/3))/(2^(2/3) Subsuperscript[Ω, Λ, 2/3])},
{a[t]->-(((-1)^(1/3) E^(-(C[1]+t Subscript[H, 0]) Sqrt[Subscript[Ω, Λ]]) (E^(3 (C[1]+t Subscript[H, 0]) Sqrt[Subscript[Ω, Λ]])-Subscript[Ω, m] Subscript[Ω, Λ])^(2/3))/(2^(2/3) Subsuperscript[Ω, Λ, 2/3]))}}*)
Out of 3 solutions this one seems to be physical one:
$$\frac{e^{-\left(C[1]+t
H_0\right) \sqrt{\Omega _{\Lambda }}} \left(e^{3 \left(C[1]+t H_0\right) \sqrt{\Omega _{\Lambda }}}-\Omega _m \Omega _{\Lambda }\right){}^{2/3}}{2^{2/3}
\Omega _{\Lambda }^{2/3}}$$
Solvewill not solve your equation, you should examine these answers: 1, 2, 3, then you should understand well the underlying issues. – Artes Apr 27 '20 at 23:15