I'm looking for some sets of solutions for this nonlinear system. I only have to respect the conditions, getting numerical values to use for another thing:
$\delta_1>10 |\lambda_1| (1)$
$\delta_2>10 |\lambda_2| (2)$
$\Delta_1>10 |\Omega_1| (3)$
$\Delta_2>10 |\Omega_2| (4)$
$\Delta_3>10 |\Omega_3| (5)$
$\frac{|\lambda_1|^2}{\delta_1} = \frac{|\lambda_2|^2}{\delta_2} (6)$
$\Delta_1 + \frac{|\Omega_1|^2}{\Delta_1} +\frac{|\Omega_3|^2}{\Delta_3} = \delta_1 + \frac{|\Omega_2|^2}{\Delta_2} (7)$
$\delta_2 + \frac{|\Omega_1|^2}{\Delta_1} +\frac{|\Omega_3|^2}{\Delta_3} = \Delta_2 + \frac{|\Omega_2|^2}{\Delta_2}(8)$
$\alpha = \frac{\lambda_1 \Omega_1}{\delta_1} - \frac{\lambda_2 \Omega_2}{\delta2} (9)$
$\beta = \frac{\lambda_1 \Omega_1}{\Delta_1} - \frac{\lambda_1 \Omega_1}{\Delta_2} (11)$
$\alpha < 0.1$ $(11)$
$\beta < 0.1$ $(12)$
$|\lambda_1|=1.0$ $ (13)$
Naturally, $\delta_1, \delta_2, \Delta_1, \Delta_2$ and $ \Delta_3$ $\epsilon$ $\Re $.
I'm using Mathematica to solve this nonlinear system of parameters (image below) by using NSolve, where I give some parameters and apply the conditions, but it's not working.
I know it is far away from a good strategy to attack this problem. Could someone help me with a code in Mathematica that works setting a few parameters and the computer calculates the others (respecting all the conditions)?
