I have the following elliptic PDE (describing temperature in a plate, w in thermal contact with two fluids h and c): $$\lambda_h \frac{\partial^2 \theta_w}{\partial x^2} + \lambda_c V \frac{\partial^2 \theta_w}{\partial y^2} - (\beta_h+V\beta_c)\theta_w+(\beta_h\theta_h+V\beta_c\theta_c) = 0 \tag 1$$
pde = Subscript[λ, h] D[θ[x, y], x, x] + Subscript[λ, c] V D[θ[x, y], y, y] - (Subscript[β, h] + V Subscript[β, c] [Theta][x, y] + (Subscript[β, h] θh[x, y] + V Subscript[β, c] θc[x, y]) == 0
with the boundary conditions ($\beta_h, \beta_c, V, \lambda_h, \lambda_c$ are constants)
$$\theta_w(0,y)=1, \theta_w(x,0)=0$$ $$\frac{\partial \theta_w(1,y)}{\partial x}=\frac{\partial \theta_w(x,1)}{\partial y}=0$$
where \begin{eqnarray} \theta_h(x,y) &=& \beta_h e^{-\beta_h x} \int e^{\beta_h x} \theta_w(x,y) \, \mathrm{d}x,\\ \theta_c(x,y) &=& \beta_c e^{-\beta_c y} \int e^{\beta_c y} \theta_w(x,y) \, \mathrm{d}y. \end{eqnarray}
It is also known that $\theta_h(0,y)=1$ and $\theta_c(x,0)=0$.
Trying with separation of variables:
Substituting $\theta_h$ and $\theta_c$ in $(1)$ and using the ansatz $\theta_w(x,y) = e^{-\beta_h x} f(x) e^{-\beta_c y} g(y)$ we obtain two linear third-order ODEs with constant coefficients for $F(x) := \int f(x) \, \mathrm{d}x$ and $G(y) := \int g(y) \, \mathrm{d}y$: \begin{eqnarray} \lambda_h F''' - 2 \lambda_h \beta_h F'' + \left( (\lambda_h \beta_h - 1) \beta_h - \mu \right) F' + \beta_h^2 F &=& 0, \tag 2\\ V \lambda_c G''' - 2 V \lambda_c \beta_c G'' + \left( (\lambda_c \beta_c - 1) V \beta_c + \mu \right) G' + V \beta_c^2 G &=& 0,\tag 3 \end{eqnarray} with some separation constant $\mu \in \mathbb{R}$.
The boundary conditions take the form:
For G: $G'(0)=0, G(0)=0$ and $\frac{G''(1)}{G'(1)}=\beta_c$
In order to get another homogeneous condition of $F$, we use $\theta_{h1}(x,y):=\theta_h (x,y)-1$. This does not change Eq. $(2)$ or $(3)$ but gives us another condition on $F$ i.e. $F'(0)=0$
For F: $\frac{F''(1)}{F'(1)}=\beta_h, F'(0)=0$
Can anyone suggest a way forward in this problem ? I know I need to find the Eigenvalues $\mu$ and use the non-homogeneous b.c. and orthogonality to complete the solution, Krazug has already provided a method to find the $\mu$ values in an answer below. I need to understand how to use these with the $F$ equation to complete the $\theta_w$ solution
CONTEXT The integro-differential equation from which the above problem arises is $D$:
I had a system of three PDEs $$\frac{\partial \theta_h}{\partial x}+\beta_h (\theta_h-\theta_w) = 0 \tag A$$
$$\frac{\partial \theta_c}{\partial y} + \beta_c (\theta_c-\theta_w) = 0 \tag B$$
$$\lambda_h \frac{\partial^2 \theta_w}{\partial x^2} + \lambda_c V\frac{\partial^2 \theta_w}{\partial y^2}-\frac{\partial \theta_h}{\partial x} - V\frac{\partial \theta_c}{\partial y} = 0 \tag C$$
On eliminating $\theta_h$ and $\theta_c$ from $C$ I reach $$\lambda_h \frac{\partial^2 \theta_w}{\partial x^2} + \lambda_c V \frac{\partial^2 \theta_w}{\partial y^2} +( -\beta_h - V \beta_c )\theta_w +\beta_h^2 e^{-\beta_h x} \int e^{\beta_h x} \theta_w(x,y) \mathrm{d}x + \beta_c^2 e^{-\beta_c y}\int e^{\beta_c y} \theta_w(x,y)\mathrm{d}y = 0 \tag D$$
The BCs are
$$\theta_w(0,y)=1, \theta_w(x,0)=0$$ $$\frac{\partial \theta_w(1,y)}{\partial x}=\frac{\partial \theta_w(x,1)}{\partial y}=0$$ and $\theta_h(0,y)=1$, $\theta_c(x,0)=0$.

FindRooterrors regarding Accuracy/Precision, and it just returns the original start point without searching for a root. – SPPearce May 14 '20 at 19:32muI get are1.18555e-8, -7, -20, -40,... This is what happens for me too, it returns to the original start point. And you are exactly right, this is an integro-differential equation. Basically, I have got stuck here. Even if I do find the eigen values $\mu$, I am at a loss here on how to build the final solution. – Avrana May 14 '20 at 19:58