Let $m,k,p$ be fixed positive integers. I want to create a table of k-tuples $(x_1,x_2,\ldots,x_k)$ comprised of solutions in positive integers to the equation below:
$$x_1+x_2+\cdots+x_k=m\quad\text{where }1\leq{}x_1,x_2,\ldots,x_k\leq{}p$$
For example, if I set $m=16,k=3$, and $p=6$. How can I make mathematica generate the set (table) of integer triples $(x_1,x_2,x_3)$ such that $$x_1+x_2+x_3=16$$ where $1\leq{}x_1,x_2,x_3\leq{}6$.
Also, how would I seperately generate a table of positive integral triples $(x_1,x_2,x_3)$ for which $$x_1+x_2+x_3\geq{}16 \quad \text{and } 1\leq{}x_1,x_2,x_3\leq{}6.$$