$Version
(* "12.1.1 for Mac OS X x86 (64-bit) (June 19, 2020)" *)
Clear["Global`*"]
eqn = (1 - E^x + (3 x^2)/2)/(2 x) == a;
The numeric solution for a given value of a and an initial estimate is given by FindRoot
f[a_?NumericQ, init_?NumericQ] :=
FindRoot[(1 - E^x + (3 x^2)/2)/(2 x) == a, {x, init}]
pt1 = ({x, a} /. f[a, -10]) /. a -> -6 // Quiet
(* {-7.91581, -6} *)
pt2 = ({x, a} /. f[a, 3]) /. a -> -6 // Quiet
(* {4.42428, -6} *)
To find the max value of a
xa = Solve[D[eqn[[1]], x] == 0, x, Reals][[1]]
(* {x -> Root[{-2 + E^#1(2 - 2#1) +
3#1^2 & ,
1.554653058468533267935
17428741457642172`20.286009576768794}]} )
The exact value is a Root expression.
The maximum value of a is then
amax = a /. Solve[eqn /. xa, a, Reals][[1]]
(* (1 - E^Root[{-2 + E^#1(2 - 2#1) +
3#1^2 & ,
1.55465305846853326793
517428741457642172`20.286009576768794}] +
(3/2)Root[{-2 + E^#1(2 - 2#1) +
3#1^2 & ,
1.5546530584685332679
3517428741457642172`20.286009576768794}]^
2)/(2Root[{-2 + E^#1(2 - 2#1) +
3#1^2 & ,
1.554653058468533267935
17428741457642172`20.286009576768794}]) )
The {x, a} point for max a is
(pt = {x, amax} /. xa) // N
(* {1.55465, -0.0347424} *)
where N has converted the Root expressions to their approximate numeric values.
ContourPlot shows the solutions to the equation
ContourPlot[Evaluate@eqn, {x, -13, 5}, {a, -10, 0},
PlotPoints -> 50,
Epilog -> {AbsolutePointSize[4], Tooltip[Point[#], #] & /@ {pt1, pt2},
Red, Tooltip[Point[#], #] &[N@pt]},
FrameLabel -> (Style[#, 14, Bold] & /@ {x, a})]

f[a_] := NSolve[(1 - E^x + (3 x^2)/2)/(2 x) == a, x, Reals];f[-1]which results in{{x -> -0.892312}, {x -> 3.04378}}. EvenAsymptoticSolve[(1 - E^x + (3 x^2)/2)/(2 x) == a, {x}, {a, -1, 2}]fails. – user64494 Jul 11 '20 at 06:41a < -0.03475you can find solution withSolve. – Artes Jul 11 '20 at 09:53