5

Tossing 4 points on a circle at a time, and calculate the chance of all 4 points on the upper part of the circle.

An illustration for this

This is very simple by math:

$$\left( \frac{1}{2} \right)^4 = 0.0625$$

But I want do a simulation in Mathematica.

po = RandomVariate[UniformDistribution[{{0, 1}, {0, 2 Pi}}], 40000000];
f[m_, n_] := {m Cos[n], m Sin[n]};
Apply[f, po, {1}] // Partition[#, 4] & // 
   Select[#, AllTrue[Last /* GreaterEqualThan[0]]] & // 
  Length // AbsoluteTiming

it takes around 140 seconds for this code to finish.

Is there a way to speed this up?

David G. Stork
  • 41,180
  • 3
  • 34
  • 96
kile
  • 1,671
  • 5
  • 10

2 Answers2

6

It is more efficient to use RandomPoint and RandomPoint distributes the points uniformly over the region.

Clear["Global`*"]

f[m_, n_] := {m Cos[n], m Sin[n]};

n = 80000;

To accurately compare the two methods, the point generation needs to be included in the timing.

RepeatedTiming[
 po = RandomVariate[
   UniformDistribution[{{0, 1}, {0, 2 Pi}}], n];
 (Apply[f, po, {1}] // Partition[#, 4] & // 
      Select[#, AllTrue[Last /* GreaterEqualThan[0]]] & // Length)/(n/4) // N]

(* {0.160, 0.06455} *)

Note that the points cluster near the origin.

ListPlot[f @@@ po, AspectRatio -> 1]

enter image description here

RepeatedTiming[
 ((pp = RandomPoint[Disk[], n]) // Partition[#, 4] & // 
      Select[#, AllTrue[Last /* GreaterEqualThan[0]]] & // Length)/(n/4) // N]

(* {0.0423, 0.0619} *)

ListPlot[pp, AspectRatio -> 1]

enter image description here

Bob Hanlon
  • 157,611
  • 7
  • 77
  • 198
  • f[m_, n_] := {Sqrt[m] Cos[n], Sqrt[m] Sin[n]} fixes the distribution problem and it only slows it down by a small fraction but RandomPoint is still faster. When generating $10^6$ points in a vectorized fashion, I found that it took 0.020 seconds versus 0.0256 with RandomPoint, so then they are about equivalent. – C. E. Jul 15 '20 at 08:35
  • @C.E. why can adding Sqrt solve that problem? Can you explain? – kile Jul 16 '20 at 12:45
  • @kile Have a look here. – C. E. Jul 16 '20 at 16:29
6

We get additional speed-up combining RandomPoint with UnitStep,Total and Min or Count:

n = 10^6;

SeedRandom[1];

RepeatedTiming[ Total[Min /@ UnitStep[RandomPoint[Disk[], {n/4, 4}][[All, All, 2]]]]]

{0.099, 15733}
SeedRandom[1];

RepeatedTiming[ Count[4] @ Total[UnitStep[RandomPoint[Disk[], {n/4, 4}][[All, All, 2]]], {2}]]

{0.11, 15733}

versus the method from Bob Hanlon's answer:

SeedRandom[1];

RepeatedTiming[ RandomPoint[Disk[], n] // Partition[#, 4] & // Select[#, AllTrue[Last /* GreaterEqualThan[0]]] & // Length]

{0.8295, 15733}
kglr
  • 394,356
  • 18
  • 477
  • 896