0

I want to make calculations with matrices in the form (for lovers of statistical mechanics, is just the first step replica symmetry breaking)

par1 = MatrixForm[{{A, a1, a1, a0, a0, a0, a0, a0, a0}, 
                   {a1, A, a1, a0, a0, a0, a0, a0, a0}, 
                   {a1, a1, A, a0, a0, a0, a0, a0, a0}, 
                   {a0, a0, a0, A, a1, a1, a0, a0, a0}, 
                   {a0, a0, a0, a1, A, a1, a0, a0, a0}, 
                   {a0, a0, a0, a1, a1, A, a0, a0, a0}, 
                   {a0, a0, a0, a0, a0, a0, A, a1, a1}, 
                   {a0, a0, a0, a0, a0, a0, a1, A, a1}, 
                   {a0, a0, a0, a0, a0, a0, a1, a1, A}}]

or in traditional latex notation (where \epsilon is nonzero only in the diagonal blocks)

par1_{ab} = (A-a1) \delta_{ab} + (a1-a0) \epsilon_{ab} + a0

The peculiarity is that I want to make calculations (multiplication between matrices of the same kind, calculation of the inverse) for general values for the dimension n of the matrix and the dimension m of the blocks, using just the informations on the functional block form of the matrix.

How can you do this in a smart way in Mathematica?

psmith
  • 815
  • 2
  • 7
  • 20

0 Answers0