Differentiate your equation :
exp00= Dt /@ (x Sin[Pi y] - y Cos[Pi x] == 1)
(* -Cos[π x] Dt[y] + π x Cos[π y] Dt[y] + π y Dt[
x] Sin[π x] + Dt[x] Sin[π y]==0 *)
( = $-\text{Cos}[\pi x] \text{Dt}[y]+\pi x \text{Cos}[\pi y] \text{Dt}[y]+\pi y \text{Dt}[x] \text{Sin}[\pi x]+\text{Dt}[x] \text{Sin}[\pi y]==0$)
replace Dt[x] by for example dx, idem for y
exp01 = exp00 /. {Dt[y] -> dy, Dt[x] -> dx}
(* -dy Cos[π x] + dy π x Cos[π y] + dx π y Sin[π x] +
dx Sin[π y] == 0 *)
( = $-\text{dy} \text{Cos}[\pi x]+\text{dy} \pi x \text{Cos}[\pi y]+\text{dx} \pi y \text{Sin}[\pi x]+\text{dx} \text{Sin}[\pi y]==0$)
The reason for doing this is that if we gives yet numerical values to x and y, Dt[x] and Dt[y] will become null (may be useless here, as we give values at the very end).
Solve dy function of dx :
derivative00=dy/dx /. Solve[exp01 ,{dy}][[1]]
(* (-dx π y Sin[π x] -
dx Sin[π y])/(dx (-Cos[π x] + π x Cos[π y])) *)
( = $\frac{-\text{dx} \pi y \text{Sin}[\pi x]-\text{dx} \text{Sin}[\pi y]}{\text{dx} (-\text{Cos}[\pi x]+\pi x \text{Cos}[\pi y])}$)
Cancel dx which is common to numerator and denominator :
derivative01=Cancel[derivative00]
(* (π y Sin[π x] + Sin[π y])/(Cos[π x] - π x Cos[π y]) *)
( = $\frac{\pi y \text{Sin}[\pi x]+\text{Sin}[\pi y]}{\text{Cos}[\pi x]-\pi x \text{Cos}[\pi y]}$ )
Apply the numeric values :
derivative02=derivative01 /. {x -> 2/3, y -> 2}
resultat : (Sqrt[3] π)/(-(1/2) - (2 π)/3)
( = $\frac{\sqrt{3} \pi }{-\frac{1}{2}-\frac{2 \pi }{3}}$)
verification :
ContourPlot[Evaluate[eqn[x, y]], {x, 0, Pi}, {y, 0, Pi},
Epilog -> {
PointSize[0.03],
Point[{2/3, 2}],
Text[Style["{2/3,2}", FontSize -> 12], {2/3, 2}, {1, 1.5}],
Line[{{2/3 - 1,
2 - (Sqrt[3] π)/(-(1/2) - (2 π)/3)}, {2/3 + 1,
2 + (Sqrt[3] π)/(-(1/2) - (2 π)/3)}}]
}]

f[a] /. a->bgivesf[b]– andre314 Apr 08 '13 at 22:01