If the equation of the circle in the Minkowski 3 space is given as
$S_1^2 = \{x \in E_1^3:- x_1^2 + x_2^2 + x_3^2 \}$, how can I replace it in the following code?
f[u_] :=
(eqns = {t'[s] == κ[s] n[s],
n'[s] == -κ[s] t[s] + τ[s] b[s],
b'[s] == -τ[s] n[s], r'[s] == t[s], t[0] == t0, n[0] == n0,
b[0] == b0, r[0] == r0};
Subscript[v, x0] = u;
α = .4; β = 0.5;
κ[s_] = 2 β Sech[u α + s β];
τ[s_] = 1 - α/β;
{t0, n0, b0} = Orthogonalize[{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}];
r0 = {0, 0, 0};
sol = First@NDSolve[eqns, {r, t, n, b}, {s, 0, 20}];
ParametricPlot3D[Evaluate[r[s] /. sol], {s, 0, 20},
PlotStyle -> {Thick, Red}, PlotRangePadding -> 1, Boxed -> False,
Axes -> None
])
gm[u_] :=
(eqns = {t'[s] == κ[s] n[s],
n'[s] == -κ[s] t[s] + τ[s] b[s],
b'[s] == -τ[s] n[s], r'[s] == t[s], t[0] == t0, n[0] == n0,
b[0] == b0, r[0] == r0};
α = .4; β = 0.5;
κ[s_] = 2 β Sech[u α + s β];
τ[s_] = 1 - α/β;
{t0, n0, b0} = Orthogonalize[{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}];
r0 = {0, 0, 0};
sol = First@NDSolve[eqns, {r, t, n, b}, {s, 0, 20}];
Graphics3D[
Text[Style["t=" <> ToString[u], Black, Italic,
30], {Evaluate[r[20] /. sol]}]])
Show[Table[f[u], {u, 0, 4}], Table[gm[u], {u, 0, 4}], PlotRange -> All]
g1[u_] := (eqns = {t'[s] == κ[s] n[s],
n'[s] == -κ[s] t[s] + τ[s] b[s],
b'[s] == -τ[s] n[s], r'[s] == t[s], t[0] == t0, n[0] == n0,
b[0] == b0, r[0] == r0};
α = .4; β = 0.5;
κ[s_] = 2 β Sech[u α + s β];
τ[s_] = 1 - α/β;
{t0, n0, b0} = Orthogonalize[{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}];
r0 = {0, 0, 0};
sol = First@NDSolve[eqns, {r, t, n, b}, {s, 0, 20}];
ParametricPlot3D[Evaluate[t[s] /. sol], {s, 0, 20},
PlotStyle -> {Thick, Blue}, PlotRange -> All, Boxed -> False,
Axes -> None]);
sph = SphericalPlot3D[{1}, {θ, 0, Pi}, {ϕ, 0, 2 Pi},
Boxed -> False, Axes -> None,
PlotStyle ->
Directive[Orange, Opacity[0.7], Specularity[White, 10]],
Mesh -> None, PlotPoints -> 10];
where in the above code, we draw an evolved curve on a sphere in the Euclidean space. In the Minkowski space (timelike type) we have Frenet formulae as:
$\qquad t' = \kappa\,n,\quad n' = \kappa\,t + \tau\,b, \quad b' = - \tau\,n$.
Also, $<t,\,t>\, = -1$, $<n,\,n>\, = 1$, $<b,b>\, = 1$, $t \times n = b$, $n \times b = - t$ and $b \times t = n$. The inner product is defined as
$\qquad <x,y>\, = - x_{1}\, y_{1} + x_{2}\, y_{2} + x_{3}\, y_{3}$
where
$\qquad x =\, <x_{1},x_{2},x_{3}> \quad y =\, <y_{1} ,y_{2},y_{3}>$.
and the cross product is
$\qquad x \, \times \, y = \begin{vmatrix} -e_{1} & e_{2} & e_{3} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$.
Can any one help?. I need applying the same code above in the Minkowski space.
