I want to fit 3 data sets to a model consisting of 3 differential equations and 7 parameters. I want to find the parameters best fitting to my model.

I have searched for several related examples. I borrowed this:https://mathematica.stackexchange.com/questions/28461/how-to-fit-3-data-sets-to-a-model-of-4-differential-equations
sol = ParametricNDSolveValue[{Sg'[t] == -((kg Sg [t] X[t])/(
Ksg + Sg[t])), Sg[0] == 490,
Sc'[t] == -((kc Sc [t] Sg[t] X[t])/((Ksc + Sc[t]) (Ksg + Sg[t]))),
Sc[0] == 230,
X'[t] == -b X[t] - (
kc Sc[t] Sg[t] X[t])/((Ksc + Sc[t]) (Ksg + Sg[t]) T) + (
kg Sg[t] X[t] Y)/(Ksg + Sg[t]), X[0] == 22}, {Sg, Sc, X}, {t, 0,
100}, {kg, Ksg, kc, Ksc, b, T, Y}];
abscissae = {0., 18., 30., 45., 58., 64., 68., 73., 78., 83.5, 90.5,
95., 99.};
ordinates = {{490.18, 467.06, 442.16, 420.82, 322.32, 248.67, 209.15,
161.54, 98.73, 28.71, 5.34, 0.76, 0.31
}, {231.3, 232.8, 209.1, 167.1, 127.3, 100.0, 87.5, 76.8, 52.8,
52.7, 57.7, 57.0, 58.5}, {22, 30, 36, 60, 77, 92, 107, 115, 125,
138, 151, 156, 156}};
data = ordinates;
ListLinePlot[data, DataRange -> {0, 100}, PlotRange -> All,
AxesOrigin -> {0, 0}]
transformedData = {ConstantArray[Range@Length[ordinates],
Length[abscissae]] // Transpose,
ConstantArray[abscissae, Length[ordinates]], data}~
Flatten~{{2, 3}, {1}};
model[kg_, Ksg_, kc_, Ksc_, b_, T_, Y_][i_, t_] :=
Through[sol[kg, Ksg, kc, Ksc, b, T, Y][t], List][[i]] /;
And @@ NumericQ /@ {kg, Ksg, kc, Ksc, b, T, Y, i, t};
fit = NonlinearModelFit[transformedData,
model[kg, Ksg, kc, Ksc, b, T, Y][i, t], {kg, Ksg, kc, Ksc, b, T,
Y}, {i, t}, Method -> "Gradient"];
Show[Plot[Evaluate[Table[fit[i, t], {i, 3}]], {t, 0, 100},
PlotLegends -> {Sg, Sc, X}],
ListPlot[data, DataRange -> {0, 100}, PlotRange -> All,
AxesOrigin -> {0, 0}]]
But it's not working well
This is the first time I use MMA for fitting. I would really appreciate your help!
kg, Ksg, kc, Ksc, b, T, Y, all positive ? – Ulrich Neumann Oct 15 '20 at 12:49MaxIterations -> 1000, for example. (As you do show a "Failed to converge" message.) – JimB Oct 15 '20 at 18:20kg > 0, Ksg > 0, kc > 0, Ksc > 0, b > 0, T > 0, Y > 0together with the optionMethod->"NMinimize"in your fit . – Ulrich Neumann Oct 15 '20 at 20:51