Clear["Global`*"]
fun1 = ((9/10)^x)*Cos[5 x] - y^3;
fun2 = x^2 + 1 x*y^2 + 3*y^4 - 8*y - 4;
You can use NSolve with constraints on the variables
sol = NSolve[{fun1 == 0, fun2 == 0, -4 < x < 4, -2 < y < 2}, {x, y}, Reals]
(* {{x -> -2.81502, y -> 0.437016}, {x -> -2.19928,
y -> 0.101797}, {x -> -1.57212, y -> -0.198197}, {x -> -0.930805,
y -> -0.400714}, {x -> -0.335043, y -> -0.476184}, {x -> 0.334402,
y -> -0.460326}, {x -> 0.931406, y -> -0.368789}, {x -> 1.57226,
y -> -0.183921}, {x -> 2.19943, y -> 0.107942}, {x -> 2.74341,
y -> 0.673483}} *)
ContourPlot[{fun1, fun2}, {x, -4, 4}, {y, -2, 2},
FrameLabel -> (Style[#, 14, Bold] & /@ {x, y}),
Epilog -> {Red, AbsolutePointSize[4],
Tooltip[Point[#], #] & /@ ({x, y} /. sol)},
PlotLegends -> Placed["Expressions", {0.5, 0.125}]]

ss = sols // Simplify // NandContourPlot[Evaluate[{eq1, eq2}], {x, -5, 5}, {y, -3, 3}, Epilog -> {Red, Point[{x, y}] /. ss}]– Akku14 Oct 18 '20 at 13:42ss = sols // Simplify // Nis the same asss = N[Simplify[sols]]. Look into the help manual. If you want only do it for the first solution, doss1 = N[Simplify[sols[[1]]]]. – Akku14 Oct 18 '20 at 18:31