0

$(x/3)^2+(y/5)^2=1$, $x=3\sin[t]$, $y=5 \cos[t]$

I want to draw a phase trajectory with time-lapse using manipulate or animate.

Manipulate[ParametricPlot[(x/3)^2 + (p/5)^2 == 1, {x, -3, 3}, {p, -5, 5}], {t, 0, 10}] I tried this code. It is not working. What is the proper version?

Tursinbay
  • 161
  • 2
  • Try ContourPlot but parametric version of the equation + ParametricPlot will be more efficient. – Kuba Oct 22 '20 at 06:27
  • I mean manipulating the time ellipse needs to be drawn. Not asking how to draw an ellipse. – Tursinbay Oct 22 '20 at 06:33
  • Sorry, I am confused as to what do you want to plot. For given t the equation does not represent the ellipse, it is just True/False. – Kuba Oct 22 '20 at 06:43
  • ParametricPlot[{3 Sin[t],5 Cos[t]} ,{t,0,10}] – Ulrich Neumann Oct 22 '20 at 07:00
  • 2
    Something like this? Manipulate[ParametricPlot[{3 Sin[t], 5 Cos[t]}, {t, 0, tMax}, PlotRange -> {{-3, 3}, {-5, 5}} ], {tMax, .01, 2 \[Pi]}] – Natas Oct 22 '20 at 07:04
  • Good idea, Natas. It works. Thank you. – Tursinbay Oct 22 '20 at 07:49
  • Related: https://mathematica.stackexchange.com/questions/8832/making-mathematical-animations-with-mathematica, https://mathematica.stackexchange.com/questions/73226/manipulate-of-graphics-parametricplot – Michael E2 Oct 22 '20 at 16:41

0 Answers0