$(x/3)^2+(y/5)^2=1$, $x=3\sin[t]$, $y=5 \cos[t]$
I want to draw a phase trajectory with time-lapse using manipulate or animate.
Manipulate[ParametricPlot[(x/3)^2 + (p/5)^2 == 1, {x, -3, 3}, {p, -5, 5}], {t, 0, 10}] I tried this code. It is not working. What is the proper version?
tthe equation does not represent the ellipse, it is just True/False. – Kuba Oct 22 '20 at 06:43ParametricPlot[{3 Sin[t],5 Cos[t]} ,{t,0,10}]– Ulrich Neumann Oct 22 '20 at 07:00Manipulate[ParametricPlot[{3 Sin[t], 5 Cos[t]}, {t, 0, tMax}, PlotRange -> {{-3, 3}, {-5, 5}} ], {tMax, .01, 2 \[Pi]}]– Natas Oct 22 '20 at 07:04