0

I want to solve for X in the equation ode1 (Meaning to leave it alone, or that all the values are on the other side of the equal sign) but the answer it gives me includes to then graph it X vs L but the values on L are changing constantly. Please help

ode1 = (.003) (2.28*-6) + ((1651 - X)*
     Sin[3 Degree]) + (((2*(2.27766*-6)*Sqrt[.003])/
       Tan[6 Degree])) (Sqrt[.003 + L*Tan[6 Degree]] - 
      Sqrt[.003]) (1651 - X) - 0.9*(5.67*-8)*(.003*3 Degree*L)*X^4 == 0
sol = Solve[ode1, X, {L, 0, 10}]
Plot[sol, {L, 0, 10}]```
JorgeH
  • 3
  • 2

1 Answers1

0

To plot the relation between L and X,we need not solve by hand,just use ContourPlot

Clear[fun, ode1];
fun = (.003) (2.28*-6) + ((1651 - X)*
      Sin[3 Degree]) + (((2*(2.27766*-6)*Sqrt[.003])/
        Tan[6 Degree])) (Sqrt[.003 + L*Tan[6 Degree]] - 
       Sqrt[.003]) (1651 - X) - 0.9*(5.67*-8)*(.003*3 Degree*L)*X^4 //
    Simplify;
ode1 = fun == 0;
(*Plot3D[fun,{L,0,10},{X,-50,50}]*)
ContourPlot[
 fun == 0, {L, 0, 10}, {X, -50, 50}, FrameLabel -> {L, X}]

enter image description here

If you insist to Solve the equation,then we can do this by

Clear[fun, ode1, sol];
fun = (.003) (2.28*-6) + ((1651 - X)*
      Sin[3 Degree]) + (((2*(2.27766*-6)*Sqrt[.003])/
        Tan[6 Degree])) (Sqrt[.003 + L*Tan[6 Degree]] - 
       Sqrt[.003]) (1651 - X) - 0.9*(5.67*-8)*(.003*3 Degree*L)*X^4 //
    Simplify;
ode1 = fun == 0;
sol = Solve[ode1, X];
Plot[X /. sol, {L, 0, 10}]

enter image description here

cvgmt
  • 72,231
  • 4
  • 75
  • 133