It is desired to find all collections $P = \{A_1, A_2, \ldots, A_m\}$ of $m$ disjoint $k$-subsets of a finite set $X$. Such collections consist of two types: those which include a specified element of $X$ (say $a$) and those that do not. If $a \in A_j$ for some $j$ then we might as well reindex the elements of $P$ so that $j=1$. All possibilities for $A_1$ are found by adjoining all possible $k-1$-element subsets of $X - {a}$ to $a$, whereas all possibilities for the $A_2, \ldots, A_m$ are found recursively for $X - A_1$ with $m=1$. Otherwise, $a$ is not in any $A_j$ and we are left to find similar collections for $X - {a}$.
This gives the following recursive solution. It's not fast but it's not slow, either--see the timing example below.
Please note that the number of solutions grows very, very quickly with $k$ and $m$. Their number is computed with combinationsCount, which uses Multinomial to obtain
$$\frac{n!}{k!^m (n - m k)! m!}.$$
The numerator is the size of the permutation group on $X$ while the denominator is the size of the stabilizer of any collection $P$: it consists of all permutations that (a) separately permute the elements of the $A_j$, (b) permute the remaining elements in $X - \cup_j A_j$, and (c) then permute the $A_j$ among themselves.
combinations[x_List, k_Integer, 0] := {{}};
combinations[x_List, k_Integer, m_Integer] := {};
combinations[x_List, k_Integer, m_Integer] /;
k m <= Length[x] && k >= 1 && m >= 1 := Block[{y, with, without},
y = Prepend[#, First@x] & /@ Subsets[Rest@x, {k - 1}];
with = Flatten[Table[Prepend[#, z] & /@ combinations[Complement[x, z], k, m - 1], {z, y}], 1];
without = combinations[Rest@x, k, m];
with~Join~without
];
combinationsCount[n_, k_, m_] := Multinomial @@ Append[ConstantArray[k, m], n - k m] / m!
Examples
combinationsCount[6, 3, 2]
$10$
MatrixForm /@ combinations[{a, b, c, d, e, f}, 3, 2]
$\begin{array}{lllll}
\left(
\begin{array}{ccc}
a & b & c \\
d & e & f
\end{array}
\right) & \left(
\begin{array}{ccc}
a & b & d \\
c & e & f
\end{array}
\right) & \left(
\begin{array}{ccc}
a & b & e \\
c & d & f
\end{array}
\right) & \left(
\begin{array}{ccc}
a & b & f \\
c & d & e
\end{array}
\right) & \left(
\begin{array}{ccc}
a & c & d \\
b & e & f
\end{array}
\right) \\
\left(
\begin{array}{ccc}
a & c & e \\
b & d & f
\end{array}
\right) & \left(
\begin{array}{ccc}
a & c & f \\
b & d & e
\end{array}
\right) & \left(
\begin{array}{ccc}
a & d & e \\
b & c & f
\end{array}
\right) & \left(
\begin{array}{ccc}
a & d & f \\
b & c & e
\end{array}
\right) & \left(
\begin{array}{ccc}
a & e & f \\
b & c & d
\end{array}
\right)
\end{array}$
combinationsCount[13, 3, 4]
$200200$
AbsoluteTiming[Length@combinations[Range@13, 3, 4]]
$\{5.9153384,200200\}$