I am new to Mathematica and this forum so apologies in advance if I am not doing anything properly (do let me know). I am trying to visualize the imaginary part of an integral of q w.r.t r when plotted against w in the code bellow. t1 and t2 are the limits of integration and are functions of l and w. The plot looks weird for w < 0.5 (blue patch on the left). What does it mean when this kind of behavior is in the plot? Is this due to the nature of my integrand or is there something I can do to fix it? Ideally for w < 0.5 it should be a curve/line instead of this dark patch. Any help is appreciated.
My code:
q[r_, l_, w_] :=
Sqrt[(-l (1 + l) (-(2/r^3) + 1/r^2) + 1/r^4 + w^2)/(1 - 2/r)^2 - 1/(4(-2 + r)^2)];
t1[l_, w_] :=
1/24 (2 Sqrt[3] Sqrt[(192 w^2 + (49 + (-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))^2)/(w^2 (-117649 + 525888 w^2 + 24 Sqrt[3] Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))] + Sqrt[6] [Sqrt](1/w^2 (392 + (-4802-384 w^2)/(-117649 + 525888 w^2 +24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3) - 2 (-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3) - (2304 Sqrt[3])/Sqrt[(192 w^2 + (49 + (-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))^2)/(w^2 (-117649 + 525888w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))])));
t2[l_, w_] :=
1/(4 Sqrt[3]) (Sqrt[(192 w^2 + (49 + (-117649 + 525888 w^2 + 24 Sqrt[3] Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))^2)/(w^2 (-117649 + 525888 w^2 + 24 Sqrt[3] Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))] - 1/Sqrt[2] ([Sqrt](1/w^2 (392 + (-4802 - 384 w^2)/(-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3) - 2 (-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3) - (2304 Sqrt[3])/Sqrt[(192 w^2 + (49 + (-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))^2)/(w^2 (-117649 + 525888 w^2 + 24 Sqrt[3]Sqrt[-73530625 w^2 + 159891584 w^4 - 4096 w^6])^(1/3))]))));
l = 2;
Plot[
γ = NIntegrate[q[r, l, w], {r, t2[l, w], t1[l, w]}]; Im[γ], {w, 0.01, 2}]

t1nor t2showslon its righthand side, so those functions are not functions oflandw, but only ofw. Good practice would be to removel` from the lefthand side of the definitions as well. – m_goldberg Dec 27 '20 at 04:27NIntegratewhen I run your code, don't you? Related/duplicate: https://mathematica.stackexchange.com/questions/237154/is-there-a-reason-behind-strange-noise-appearing-for-some-coefficients-of-polyno/237162#237162 – Michael E2 Dec 27 '20 at 14:32