0

I am trying to solve the following equation in Mathematica:

Solve[(xc - x) == 1/(xr - (x + x0)^2) + 1/(xr - (x - x0)^2), x]

However, this yields

{{x -> Root[-2 x0^2 - x0^4 xc + 2 xr + 2 x0^2 xc xr - xc xr^2 +  
            (x0^4 - 2 x0^2 xr + xr^2) #1 + 
            (-2 + 2 x0^2 xc + 2 xc xr) #1^2 + 
            (-2 x0^2 - 2 xr) #1^3 - xc #1^4 + #1^5 &, 1]}, 
 {x -> Root[-2 x0^2 - x0^4 xc + 2 xr + 2 x0^2 xc xr - xc xr^2 + 
            (x0^4 - 2 x0^2 xr + xr^2) #1 + 
            (-2 + 2 x0^2 xc + 2 xc xr) #1^2 + 
            (-2 x0^2 - 2 xr) #1^3 - xc #1^4 + #1^5 &, 2]}, 
 {x -> Root[-2 x0^2 - x0^4 xc + 2 xr + 2 x0^2 xc xr - xc xr^2 + 
            (x0^4 - 2 x0^2 xr + xr^2) #1 + 
            (-2 + 2 x0^2 xc + 2 xc xr) #1^2 + 
            (-2 x0^2 - 2 xr) #1^3 - xc #1^4 + #1^5 &, 3]}, 
 {x -> Root[-2 x0^2 - x0^4 xc + 2 xr + 2 x0^2 xc xr - xc xr^2 + 
            (x0^4 - 2 x0^2 xr + xr^2) #1 + 
            (-2 + 2 x0^2 xc + 2 xc xr) #1^2 + 
            (-2 x0^2 - 2 xr) #1^3 - xc #1^4 + #1^5 &, 4]}, 
 {x -> Root[-2 x0^2 - x0^4 xc + 2 xr + 2 x0^2 xc xr - xc xr^2 + 
            (x0^4 - 2 x0^2 xr + xr^2) #1 + 
            (-2 + 2 x0^2 xc + 2 xc xr) #1^2 + 
            (-2 x0^2 - 2 xr) #1^3 - xc #1^4 + #1^5 &, 5]}}

If I remove the second fraction to the right of ==, I get a regular three solutions for x. Is there a reason why the same thing doesn't happen when there are two fractions?

m_goldberg
  • 107,779
  • 16
  • 103
  • 257
Mac
  • 263
  • 1
  • 4

0 Answers0