0

I am trying to solve

$\qquad y''(t)=\frac{1}{y(t)^3}-\Big(\frac{y(t)^4+1}{y(t)^5}\Big)y'(t)^2$

When I try to evaluate

Dsolve[{y''[t] == 1/y[t]^3 - ((y[t]^4 + 1)/y[t]^5)y'[t]^2}, y[t], t]

I just get back

Dsolve[{true}, y[t], t]

How can I fix this?

m_goldberg
  • 107,779
  • 16
  • 103
  • 257
docnet
  • 1

1 Answers1

1

See this:

DSolve[{y''[t] == 1/y[t]^3 - ((y[t]^4 + 1)/y[t]^5) y'[t]^2}, y[t], t]

(* {{y[t] -> InverseFunction[ Inactive[Integrate][-((Sqrt[2] E^(-(1/(4 K[1]^4))) K[1])/Sqrt[ 2 C[1] - ExpIntegralEi[-(1/(2 K[1]^4))]]), {K[1], 1, #1}] &][ t + C[2]]}, {y[t] -> InverseFunction[ Inactive[Integrate][(Sqrt[2] E^(-(1/(4 K[2]^4))) K[2])/Sqrt[ 2 C[1] - ExpIntegralEi[-(1/(2 K[2]^4))]], {K[2], 1, #1}] &][ t + C[2]]}} *)

Have fun!

Alexei Boulbitch
  • 39,397
  • 2
  • 47
  • 96