I need to find (or guess?) the symbolic functional form of aFun[n] for a general n (where n>=1). Anyone can help?
aFun[n_] :=
Block[
{a},
a[-1, 0] = 0;
a[n + 1, 0] = 0;
a[-1, 1] = 0;
a[n + 1, 1] = 0;
With[{eqs =
Table[{a[i, 0] ==
i /n ( v +
b (alpha a[i, 0] + (1 - alpha) a[i - 1, 0])) + (1 -
i /n) (v - p +
b (alpha a[i + 1, 1] + (1 - alpha) a[i, 1])),
a[i, 1] ==
i /n ( v +
b (alpha a[i, 0] + (1 - alpha) a[i - 1, 0])) + (1 -
i /n) (v - p (1 - w) +
b (alpha a[i + 1, 1] + (1 - alpha) a[i, 1]))}, {i,
0, n}, {x, 0, 1}] // Flatten,
vars = Table[a[i, x], {i, 0, n}, {x, 0, 1}] // Flatten},
a[0, 0] /. First@Solve[eqs, vars]]
]
a[0]from this information. More info is needed. The start condition must be independent from the recursion. – Daniel Huber Mar 26 '21 at 20:01a[0], a[1];a[0], a[1], a[2];a[1], a[2], a[3];a[2], a[3], a[4]. The example seems to includea3twice in the final equation. – thorimur Mar 26 '21 at 20:55{x, 0, 1}? It just seems to produce duplicates in theeqsandvarslists. – Somos May 04 '22 at 01:35