I am trying to use xAct package to calculate certain mixing terms of $\nabla_{\chi} b$ of a scalar function $b[ \tau, r, \theta, \phi]$ for a modified metric. Here is my Code:
<< xAct`xTras`
ddim = 4;
coords = {\[Tau][], r[], \[Theta][], \[Phi][]};
DefManifold[M4,
ddim, {[Alpha], [Beta], [Gamma], [Sigma], [Mu], [Nu]}];
DefMetric[-1, g[-[Alpha], -[Beta]], CD, PrintAs -> "g"];
DefScalarFunction[{a, [Eta], b}];
DefChart[ch, M4, {0, 1, 2, 3}, coords, ChartColor -> Red];
DefConstantSymbol[K]
FRWr = DiagonalMatrix[{
-[Eta][[Tau][]]^2,
b[[Tau][], r[], [Theta][], [Phi][]]^2/(1 - K r[]^2),
b[[Tau][], r[], [Theta][], [Phi][]]^2 r[]^2,
b[[Tau][], r[], [Theta][], [Phi][]]^2 r[]^2 Sin[[Theta][]]^2
}
]
MatrixForm@MetricInBasis[g, -ch, FRWr]
MetricCompute[g, ch, Einstein, Verbose -> True]
CD[-[Alpha]]@CD[[Alpha]]@b
CD[-[Alpha]]@CD[[Alpha]]@b[[Tau][], r[], [Theta][], [Phi][]]
CD[-[Alpha]]@b CD[[Alpha]]@b
CD[-[Alpha]]@b CD[[Alpha]]@b g[-[Mu], -[Nu]]
(CD[-[Alpha]]@b CD[[Alpha]]@b) g[-[Mu], -[Nu]] g[[Gamma], [Sigma]]
The output of the last 5 lines is here:
How can I evaluate these abstract outputs? I have tried using //ToBasis[ch]// ToValues but didn't help either.
Any help would be greatly appreciated, thank you in advance.
