I want to add two arrays length and Apice, It's accuracy to six decimal places. When I use NumberForm in Table I can get normal display results.
L = Table[NumberForm[length[[i]] + Apice[[i]], {20, 6}], {i, 1, 63, 2}]
But if I don't use NumberForm, It only shows six digits.
L1 = Table[length[[i]] + Apice[[i]], {i, 1, 63, 2}]
And if I copy it, some of the data gets weird like 1738.7604379999998 `, but shouldn't it be accurate to six decimal places? Why does this happen?
Two table I used as below:
length = {200.000000, 212.115008, 225.868224, 242.378091, 257.828801,
272.097053, 288.473261, 302.301205, 317.722170, 328.294180,
341.219205, 354.796398, 365.059240, 380.752053, 393.884689,
409.720935, 422.491637, 436.821486, 451.583677, 465.562686,
480.832709, 494.209854, 517.194735, 532.293884, 545.823898,
557.184369, 576.162592, 592.980488, 608.876434, 621.865923,
636.938468, 651.753063, 663.431800, 666.319720, 677.400281,
686.410644, 697.074233, 700.348906, 707.746790, 712.203767,
715.053581, 721.561347, 724.549487, 725.797116, 728.979858,
729.081471, 733.814231, 735.237762, 738.475131, 741.799661,
741.771007, 742.562259, 744.025644, 747.807148, 750.559859,
751.632473, 752.804419, 755.629828, 756.577273, 756.870575,
758.172753, 759.441409, 761.056067};
Apice = {10.000000, 422.115008, 432.115008, 900.361323, 910.361323,
1440.287177, 1450.287177, 2041.061643, 2051.061643, 2697.077993,
2707.077993, 3403.093596, 3413.093596, 4158.904889, 4168.904889,
4972.510513, 4982.510513, 5841.823636, 5851.823636, 6768.969999,
6778.969999, 7754.012562, 7764.012562, 8813.501181, 8823.501181,
9926.509448, 9936.509448, 11105.652528, 11115.652528, 12346.394885,
12356.394885, 13645.086416, 13655.086416, 14984.837936,
14994.837936, 16358.648861, 16368.648861, 17766.072000,
17776.072000, 19196.022557, 19206.022557, 20642.637485,
20652.637485, 22102.984088, 22112.984088, 23571.045417,
23581.045417, 25050.097410, 25060.097410, 26540.372202,
26550.372202, 28034.705468, 28044.705468, 29536.538260,
29546.538260, 31048.730592, 31058.730592, 32567.164839,
32577.164839, 34090.612687, 34100.612687, 35618.226849,
35628.226849};



FullForm[0.6 + 0.7]withFullForm[1.3]. The rounding errors may be inspected like this,SetPrecision[0.6, Infinity] - 6/10. (Keep in mind that there are potentially three rounding errors in0.6 + 0.7, two for converting the input decimals to floating-point numbers and one more for the sum.) — This is one reason for decimal computers seem better for human culture, but binary is more efficient electronically. – Michael E2 Apr 14 '21 at 16:53