The $\gamma$-matrices satisfy the relation $$\gamma^\mu \gamma^\nu +\gamma^\nu\gamma^\mu=2\eta^{\mu\nu}\mathrm{id},$$ where $\eta$ is the Minkowski metric. Consider now the following process $$\begin{align*} \gamma^\mu\gamma^\nu &= \frac{1}{2!}(\gamma^\mu\gamma^\nu +\gamma^\mu\gamma^\nu) = \frac{1}{2}(\gamma^\mu\gamma^\nu + (2\eta^{\mu\nu}-\gamma^\nu\gamma^\mu))\\ &= \frac{1}{2}(\gamma^\mu\gamma^\nu-\gamma^\nu\gamma^\mu)+\eta^ {\mu\nu}\\ &=:\frac{1}{2}\varepsilon^{\mu\nu}+\eta^{\mu\nu}.\tag{1} \end{align*}$$ One can now repeat this process and obtain $$\begin{align*} \gamma^\mu\gamma^\nu\gamma^\sigma &= \frac{1}{6}\varepsilon^{\mu\nu\sigma}+ \eta^{\mu\nu}\gamma^\sigma- \eta^{\mu\sigma}\gamma^\nu+\dots \end{align*}$$ where $\varepsilon^{\mu\nu\sigma}$ is the anti-symmetrization of $\gamma^\mu\gamma^\nu\gamma^\sigma$.
Is it possible to obtain this result in Mathematica for an arbitrary product of $\gamma$-matrices, i.e. $$\gamma^{\mu_1}\dots \gamma^{\mu_r}\qquad \text{for }r\in\mathbb{N}?$$ (Realisticly speaking, I only need it for $r<8$.)
Edit: It's probably worth pointing out that one can create the antisymmetric part quite easily using
Symmetrize[\[Epsilon], Antisymmetric[{1,...,r}]]