Since DSolve cannot solve the problem up to now i.e. v12.3.0, I'd like to add a (imperfect) work-around. The idea is similar to that in the linked paper. We first transform the problem to a initial value problem of 1st order PDE with the new-in-12.3 BilateralLaplaceTransform. (Notice bilateral Laplace transform is essentially a Fourier transform with special coefficient. )
With[{psi = psi[x, t]},
eq = -D[psi, x, x]/2 + F Sin[π t] x psi == I D[psi, t];
ic = psi == Exp[-x^2] /. t -> 0];
tsys = BilateralLaplaceTransform[{eq, ic}, x, s] /.
HoldPattern@BilateralLaplaceTransform[h_[x, t_], __] :> h[s, t] /. psi -> Ψ
(*
{(-(1/2)) s^2 Ψ[s, t] - F Sin[Pi t] Derivative[1, 0][Ψ][s, t] ==
I Derivative[0, 1][Ψ][s, t], Ψ[s, 0] == E^(s^2/4) Sqrt[Pi]}
*)
Then solve it with DSolve. DSolve spits out ifun warning, which isn't too surprising, because you've chosen the periodic F Sin[π t] as $E(t)$:
tsol = Ψ[s, t] /. DSolve[tsys, Ψ, {s, t}]
(*
{E^((π (I F + π s - I F Cos[π t])^2 -
I ArcSin[Cos[π t]] (F^2 - 2 (π s - I F Cos[π t])^2) +
1/2 I π (2 F^2 - 2 π^2 s^2 + 4 I F π s Cos[π t] +
F^2 Cos[2 π t]) + F (4 π s - 3 I F Cos[π t]) Sqrt[Sin[π t]^2])/(
4 π^3)) Sqrt[π],
E^((π (I F + π s - I F Cos[π t])^2 +
I ArcSin[Cos[π t]] (F^2 - 2 (π s - I F Cos[π t])^2) -
1/2 I π (2 F^2 - 2 π^2 s^2 + 4 I F π s Cos[π t] +
F^2 Cos[2 π t]) + I F (4 I π s + 3 F Cos[π t]) Sqrt[Sin[π t]^2])/(
4 π^3)) Sqrt[π]}
*)
The tsol is probably valid only for certain interval of $t$ (maybe $0<t<1$, if I have to guess), but let's proceed anyway. The last step in principle is to transform back with
InverseBilateralLaplaceTransform[tsol, s, x]
But sadly, InverseBilateralLaplaceTransform cannot handle tsol. Given the paper doesn't include solution in the time domain either, I think this is acceptable.
"OK, but how do you know the method is correct? " A rigorous validation isn't easy, but experimental validation is. Since definition of inverse bilateral Laplace transform of $F(s)$ is $\frac{1}{2\pi\mathbb{i}} \int_{\gamma-\mathbb{i}\infty}^{\gamma+\mathbb{i}\infty}F(s)e^{st}ds$, we can validate for certain $(x,t)$ as follows:
integrand2[x_, t_] = 1/(2 Pi I) I tsol[[2]] Exp[I w x] /. s -> I w;
(validate the i.c.: )
Integrate[integrand2[x, 0], {w, -Infinity, Infinity}]
(* Exp[-x^2] *)
(* validate for x == 1, t == 1/2 )
eq /. psi -> integrand2 /. x -> 1 /. t -> 1/2 /. F -> 1 // Simplify;
Integrate[Subtract @@ %, {w, -Infinity, Infinity}]
( 0 *)
BTW, if a simpler $E(t)$ is chosen, the symbolic solution without integral can be found. For $E(t)=F t$:
(* Still, DSolve cannot correctly handle this: *)
With[{psi = psi[x, t]},
eq = -D[psi, x, x]/2 + F t x psi == I D[psi, t];
ic = psi == Exp[-x^2] /. t -> 0];
tsys = BilateralLaplaceTransform[{eq, ic}, x, s] /.
HoldPattern@BilateralLaplaceTransform[h_[x, t_], __] :> h[s, t] /. psi -> Ψ
tsol = Ψ[s, t] /. DSolve[tsys, Ψ, {s, t}]
{f1[x_, t_], f2[x_, t_]} = InverseBilateralLaplaceTransform[tsol, s, x]
(*
{1/(E^((8 I F^(5/2) t^6 + 9 (F t^2)^(5/2) + 180 F^(3/2) t^2 x + 240 I (F t^2)^(3/2) x -
360 I Sqrt[F] x^2)/(360 (-I Sqrt[F] + 2 Sqrt[F t^2]))) Sqrt[
1 + (2 I Sqrt[F t^2])/Sqrt[F]]), E^((
8 I F^(5/2) t^6 - 9 (F t^2)^(5/2) + 180 F^(3/2) t^2 x - 240 I (F t^2)^(3/2) x -
360 I Sqrt[F] x^2)/(360 (I Sqrt[F] + 2 Sqrt[F t^2])))/Sqrt[
1 - (2 I Sqrt[F t^2])/Sqrt[F]]}
*)
This isn't the end. Substituting the solution back to the PDE, only f1 turns out to be correct for $t>0$:
eq /. psi -> f1 // Simplify[#, t > 0]&
(* True *)
eq /. psi -> f2 // Simplify[#, t < 0]&
(* True *)
psi^(2,0)(etc.)? I think something might have gone wrong while copying... – thorimur May 25 '21 at 20:22Derivative[2,0][psi]andDerivative[0,1][psi], probably, i see. – thorimur May 25 '21 at 20:24DSolveitself, though, that'd be interesting. – thorimur May 25 '21 at 20:38RowBoxes. A cleaner output could be gotten by right clicking the cell bracket and first selecting Convert To > InputForm, then copying! – thorimur May 25 '21 at 20:43ode = -1/2*D[psi[x, t], {x, 2}] + F*Sin[Pi *t]*x* psi[x, t] == I* D[psi[x, t], t]which is simpler than usingDerivativenotation. Btw, Maple 2021 can't solve it. It says there is no solution. – Nasser May 25 '21 at 21:26DSolvereturns unevaluated. – Nasser Dec 08 '21 at 08:29