2

The following integral can be solved in Mathematica:

Integrate[Exp[a*(z - 1)], {x, y, z}\[Element]Sphere[],Assumptions -> a > 0 && a\[Element]Reals]

Outputs:

enter image description here

But if I change Sphere[] to implicit function, the integral can not be solved:

Integrate[Exp[a*(z - 1)], {x, y, z} \[Element] 
  ImplicitRegion[x^2 + y^2 + z^2 == 1, {x, y, z}], 
 Assumptions -> a > 0 && a \[Element] Reals]

Furthermore, can this integral be solved over a spherical cap?

Chris Guo
  • 149
  • 8
  • Integrate[Exp[a*(z - 1)], {x, y, z} \[Element] Sphere[], Assumptions -> a <= 0] performs $\frac{4 \pi e^{-a} \sinh (a)}{a}$ too. – user64494 Jun 04 '21 at 14:37

1 Answers1

2

I think we need to use ParametricRegion.

reg2 = ParametricRegion[{Cos[θ] Sin[ϕ], 
    Sin[θ] Sin[ϕ], 
    Cos[ϕ]}, {{θ, 0, 2 π}, {ϕ, 0, π/4}}];
Integrate[Exp[a*(z - 1)], {x, y, z} ∈ reg2, 
 Assumptions -> a > 0]
(* Region[reg2, ViewPoint -> {1, 1, -.5}] *)

enter image description here $$\frac{2 \pi \left(1-e^{\frac{a}{\sqrt{2}}-a}\right)}{a}$$

cvgmt
  • 72,231
  • 4
  • 75
  • 133