0

I'm trying to implement the following calculation in mathematica

$$U^{(0)}(\mu,m) = V\left(\left[\frac{\alpha_S(m)}{\alpha_S(\mu)}\right]^{\frac{\gamma^{(0)}}{2\beta_0}}\right)_DV^{-1}$$

where $\gamma^{(0)}$ is a given $10\times 10$ matrix which depends on three parameters, $\beta_0$ is a function which depends on two parameters and $V$ is the matrix which diagonalizes $\gamma^{(0)T}$

$$\gamma_D^{(0)} = V^{-1}\gamma^{(0)}V$$

In mathematica I've implemented the following code

GammaS0[Nc_, Nu_, Nd_] := ({
   {-6/Nc, 6, 0, 0, 0, 0, 0, 0, 0, 0},
   {6, -6/Nc, -2/(3 Nc), 2/3, -2/(3 Nc), 2/3, 0, 0, 0, 0},
   {0, 0, -22/(3 Nc), 22/3, -4/(3 Nc), 4/3, 0, 0, 0, 0},
   {0, 0, 
    6 - (2 (Nd + Nu))/(3 Nc), -6/Nc + 
     2 (Nd + Nu)/3, (-2 (Nd + Nu))/(3 Nc), 2 (Nd + Nu)/3, 0, 0, 0, 
    0},
   {0, 0, 0, 0, 6/Nc, -6, 0, 0, 0, 0},
   {0, 0, -2 (Nd + Nu)/(3 Nc), 
    2 (Nd + Nu)/3, -(2 (Nd + Nu))/(3 Nc), -6 (-1 + Nc^2)/(Nd + Nu) + 
     2 (Nd + Nu)/3, 0, 0, 0, 0},
   {0, 0, 0, 0, 0, 0, 6/Nc, -6, 0, 0},
   {0, 0, -2 (Nu - Nd/2)/(3 Nc), 
    2 (Nu - Nd/2)/3, -2 (Nu - Nd/2)/(3 Nc), 2 (Nu - Nd/2)/3, 
    0, -6 (-1 + Nc^2)/Nc, 0, 0},
   {0, 0, 2/(3 Nc), -2/3, 2/(3 Nc), -2/3, 0, 0, -6/Nc, 6},
   {0, 0, -2 (Nu - Nd/2)/(3 Nc), 
    2 (Nu - Nd/2)/3, -2 (Nu - Nd/2)/(3 Nc), 2 (Nu - Nd/2)/3, 0, 0, 
    6, -6/Nc}
  })
GammaE0[Nc_, Nu_, Nd_] := ( {
   {-8/3, 0, 0, 0, 0, 0, 16 Nc/27, 0, 16 Nc/27, 0},
   {0, -8/3, 0, 0, 0, 0, 16/27, 0, 16/27, 0},
   {0, 0, 0, 0, 0, 0, -16/27 + 16 Nc (Nu - Nd/2)/27, 
    0, -88/27 + 16 Nc (Nu - Nd/2)/27, 0},
   {0, 0, 0, 0, 0, 0, -16 Nc/27 + 16 (Nu - Nd/2)/27, 
    0, -16 Nc/27 + 16 (Nu - Nd/2)/27, -8/3},
   {0, 0, 0, 0, 0, 0, 8/3 + 16 Nc (Nu - Nd/2)/27, 0, 
    16 Nc (Nu - Nd/2)/27, 0},
   {0, 0, 0, 0, 0, 0, 16 (Nu - Nd/2)/27, 8/3, 16 (Nu - Nd/2)/27, 0},
   {0, 0, 0, 0, 4/3, 0, 4/3 + 16 Nc (Nu + Nd/4)/27, 0, 
    16 Nc (Nu + Nd/4)/27, 0},
   {0, 0, 0, 0, 0, 4/3, 16 (Nu + Nd/4)/27, 4/3, 16 (Nu + Nd/4)/27, 
    0},
   {0, 0, -4/3, 0, 0, 0, 8/27 + 16 Nc (Nu + Nd/4)/27, 
    0, -28/27 + 16 Nc (Nu + Nd/4)/27, 0},
   {0, 0, 0, -4/3, 0, 0, 8 Nc/27 + 16 (Nu + Nd/4)/27, 0, 
    8 Nc/27 + 16 (Nu + Nd/4)/27, -4/3}
  } )
Gamma0[Nc_, Nu_, Nd_] := GammaS0[Nc, Nu, Nd] + GammaE0[Nc, Nu, Nd]

which are the definition of the $\gamma$ matrices, and then

V[Nc_, Nu_, Nd_] := 
 Normalize /@ 
  Eigenvectors[Transpose[Gamma0[Nc, Nu, Nd]], Cubics -> True]
Gamma0D[Nc_, Nu_, Nd_] := 
 DiagonalMatrix[Eigenvalues[Gamma0[Nc, Nu, Nd]]]
U0[mu_, m_] := 
 If[mu >= mt, 
  MatrixExp[
   Log[AlphaS[mu, Lambda, 6, Nc]/AlphaS[m, Lambda, 6, Nc]] Gamma0[Nc, 
      3, 3]/(2 Beta0[6, Nc])],
            If[mb <= mu < mt, 
   MatrixExp[
    Log[AlphaS[mu, Lambda, 5, Nc]/AlphaS[m, Lambda, 5, Nc]] Gamma0[Nc,
        2, 3]/(2 Beta0[5, Nc])],
            If[mc <= mu < mb, 
    MatrixExp[
     Log[
       AlphaS[mu, Lambda, 4, Nc]/AlphaS[m, Lambda, 4, Nc]] Gamma0[Nc, 
        2, 2]/(2 Beta0[4, Nc])],
                If[ms <= mu < mc, 
     MatrixExp[
      Log[
        AlphaS[mu, Lambda, 3, Nc]/AlphaS[m, Lambda, 3, Nc]] Gamma0[Nc,
          1, 2]/(2 Beta0[3, Nc])],
                If[md <= mu < ms, 
      MatrixExp[
       Log[
         AlphaS[mu, Lambda, 2, Nc]/AlphaS[m, Lambda, 2, Nc]] Gamma0[
          Nc, 1, 1]/(2 Beta0[2, Nc])], 0]]]]]

are the definition of $U^{(0)}$ which has different values depending on $\mu$. I did not use $V$ for the evaluation of $U^{(0)}$ since I think that if I use the non-diagonal form of $\gamma^{(0)}$ is should not be necessary. But still, $V$ is needed for some further calculations.

Where my problem lies is in the following

  1. Is the implementation for the $V$ matrix correct?
  2. Why when I try to output the diagonal form of $\gamma^{(0)}$ with parameters, let's say $N_c=3, N_u=1, N_d=0$ I get the following result?
Gamma0[Nc, 1, 0]
DiagonalizableMatrixQ[Gamma0[Nc, 1, 0]]
Gamma0D[Nc, 1, 0]

{{-(14/3), 6, 0, 0, 0, 0, 16/9, 0, 16/9, 0}, {6, -(14/3), -(2/9), 2/ 3, -(2/9), 2/3, 16/27, 0, 16/27, 0}, {0, 0, -(22/9), 22/3, -(4/9), 4/3, 32/27, 0, -(40/27), 0}, {0, 0, 52/9, -(4/3), -(2/9), 2/ 3, -(32/27), 0, -(32/27), -(8/3)}, {0, 0, 0, 0, 2, -6, 40/9, 0, 16/ 9, 0}, {0, 0, -(2/9), 2/3, -(2/9), -(142/3), 16/27, 8/3, 16/27, 0}, {0, 0, 0, 0, 4/3, 0, 46/9, -6, 16/9, 0}, {0, 0, -(2/9), 2/ 3, -(2/9), 2, 16/27, -(44/3), 16/27, 0}, {0, 0, -(10/9), -(2/3), 2/ 9, -(2/3), 56/27, 0, -(34/27), 6}, {0, 0, -(2/9), -(2/3), -(2/9), 2/ 3, 40/27, 0, 202/27, -(10/3)}}

True

{{Root[183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Root[183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 2, 0], 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, -(32/3), 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, Root[ 183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 3, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Root[ 183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 8, 0], 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, Root[ 183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 4, 0], 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, Root[ 183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 7, 0], 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, Root[ 183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 6, 0], 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 4/3, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, Root[ 183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 + 59049 #^8& , 5, 0]}}

I do not now what is that Root and what is doing!

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574

0 Answers0