I'm trying to implement the following calculation in mathematica
$$U^{(0)}(\mu,m) = V\left(\left[\frac{\alpha_S(m)}{\alpha_S(\mu)}\right]^{\frac{\gamma^{(0)}}{2\beta_0}}\right)_DV^{-1}$$
where $\gamma^{(0)}$ is a given $10\times 10$ matrix which depends on three parameters, $\beta_0$ is a function which depends on two parameters and $V$ is the matrix which diagonalizes $\gamma^{(0)T}$
$$\gamma_D^{(0)} = V^{-1}\gamma^{(0)}V$$
In mathematica I've implemented the following code
GammaS0[Nc_, Nu_, Nd_] := ({
{-6/Nc, 6, 0, 0, 0, 0, 0, 0, 0, 0},
{6, -6/Nc, -2/(3 Nc), 2/3, -2/(3 Nc), 2/3, 0, 0, 0, 0},
{0, 0, -22/(3 Nc), 22/3, -4/(3 Nc), 4/3, 0, 0, 0, 0},
{0, 0,
6 - (2 (Nd + Nu))/(3 Nc), -6/Nc +
2 (Nd + Nu)/3, (-2 (Nd + Nu))/(3 Nc), 2 (Nd + Nu)/3, 0, 0, 0,
0},
{0, 0, 0, 0, 6/Nc, -6, 0, 0, 0, 0},
{0, 0, -2 (Nd + Nu)/(3 Nc),
2 (Nd + Nu)/3, -(2 (Nd + Nu))/(3 Nc), -6 (-1 + Nc^2)/(Nd + Nu) +
2 (Nd + Nu)/3, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 6/Nc, -6, 0, 0},
{0, 0, -2 (Nu - Nd/2)/(3 Nc),
2 (Nu - Nd/2)/3, -2 (Nu - Nd/2)/(3 Nc), 2 (Nu - Nd/2)/3,
0, -6 (-1 + Nc^2)/Nc, 0, 0},
{0, 0, 2/(3 Nc), -2/3, 2/(3 Nc), -2/3, 0, 0, -6/Nc, 6},
{0, 0, -2 (Nu - Nd/2)/(3 Nc),
2 (Nu - Nd/2)/3, -2 (Nu - Nd/2)/(3 Nc), 2 (Nu - Nd/2)/3, 0, 0,
6, -6/Nc}
})
GammaE0[Nc_, Nu_, Nd_] := ( {
{-8/3, 0, 0, 0, 0, 0, 16 Nc/27, 0, 16 Nc/27, 0},
{0, -8/3, 0, 0, 0, 0, 16/27, 0, 16/27, 0},
{0, 0, 0, 0, 0, 0, -16/27 + 16 Nc (Nu - Nd/2)/27,
0, -88/27 + 16 Nc (Nu - Nd/2)/27, 0},
{0, 0, 0, 0, 0, 0, -16 Nc/27 + 16 (Nu - Nd/2)/27,
0, -16 Nc/27 + 16 (Nu - Nd/2)/27, -8/3},
{0, 0, 0, 0, 0, 0, 8/3 + 16 Nc (Nu - Nd/2)/27, 0,
16 Nc (Nu - Nd/2)/27, 0},
{0, 0, 0, 0, 0, 0, 16 (Nu - Nd/2)/27, 8/3, 16 (Nu - Nd/2)/27, 0},
{0, 0, 0, 0, 4/3, 0, 4/3 + 16 Nc (Nu + Nd/4)/27, 0,
16 Nc (Nu + Nd/4)/27, 0},
{0, 0, 0, 0, 0, 4/3, 16 (Nu + Nd/4)/27, 4/3, 16 (Nu + Nd/4)/27,
0},
{0, 0, -4/3, 0, 0, 0, 8/27 + 16 Nc (Nu + Nd/4)/27,
0, -28/27 + 16 Nc (Nu + Nd/4)/27, 0},
{0, 0, 0, -4/3, 0, 0, 8 Nc/27 + 16 (Nu + Nd/4)/27, 0,
8 Nc/27 + 16 (Nu + Nd/4)/27, -4/3}
} )
Gamma0[Nc_, Nu_, Nd_] := GammaS0[Nc, Nu, Nd] + GammaE0[Nc, Nu, Nd]
which are the definition of the $\gamma$ matrices, and then
V[Nc_, Nu_, Nd_] :=
Normalize /@
Eigenvectors[Transpose[Gamma0[Nc, Nu, Nd]], Cubics -> True]
Gamma0D[Nc_, Nu_, Nd_] :=
DiagonalMatrix[Eigenvalues[Gamma0[Nc, Nu, Nd]]]
U0[mu_, m_] :=
If[mu >= mt,
MatrixExp[
Log[AlphaS[mu, Lambda, 6, Nc]/AlphaS[m, Lambda, 6, Nc]] Gamma0[Nc,
3, 3]/(2 Beta0[6, Nc])],
If[mb <= mu < mt,
MatrixExp[
Log[AlphaS[mu, Lambda, 5, Nc]/AlphaS[m, Lambda, 5, Nc]] Gamma0[Nc,
2, 3]/(2 Beta0[5, Nc])],
If[mc <= mu < mb,
MatrixExp[
Log[
AlphaS[mu, Lambda, 4, Nc]/AlphaS[m, Lambda, 4, Nc]] Gamma0[Nc,
2, 2]/(2 Beta0[4, Nc])],
If[ms <= mu < mc,
MatrixExp[
Log[
AlphaS[mu, Lambda, 3, Nc]/AlphaS[m, Lambda, 3, Nc]] Gamma0[Nc,
1, 2]/(2 Beta0[3, Nc])],
If[md <= mu < ms,
MatrixExp[
Log[
AlphaS[mu, Lambda, 2, Nc]/AlphaS[m, Lambda, 2, Nc]] Gamma0[
Nc, 1, 1]/(2 Beta0[2, Nc])], 0]]]]]
are the definition of $U^{(0)}$ which has different values depending on $\mu$. I did not use $V$ for the evaluation of $U^{(0)}$ since I think that if I use the non-diagonal form of $\gamma^{(0)}$ is should not be necessary. But still, $V$ is needed for some further calculations.
Where my problem lies is in the following
- Is the implementation for the $V$ matrix correct?
- Why when I try to output the diagonal form of $\gamma^{(0)}$ with parameters, let's say $N_c=3, N_u=1, N_d=0$ I get the following result?
Gamma0[Nc, 1, 0]
DiagonalizableMatrixQ[Gamma0[Nc, 1, 0]]
Gamma0D[Nc, 1, 0]
{{-(14/3), 6, 0, 0, 0, 0, 16/9, 0, 16/9, 0}, {6, -(14/3), -(2/9), 2/
3, -(2/9), 2/3, 16/27, 0, 16/27, 0}, {0, 0, -(22/9), 22/3, -(4/9),
4/3, 32/27, 0, -(40/27), 0}, {0, 0, 52/9, -(4/3), -(2/9), 2/
3, -(32/27), 0, -(32/27), -(8/3)}, {0, 0, 0, 0, 2, -6, 40/9, 0, 16/
9, 0}, {0, 0, -(2/9), 2/3, -(2/9), -(142/3), 16/27, 8/3, 16/27,
0}, {0, 0, 0, 0, 4/3, 0, 46/9, -6, 16/9, 0}, {0, 0, -(2/9), 2/
3, -(2/9), 2, 16/27, -(44/3), 16/27, 0}, {0, 0, -(10/9), -(2/3), 2/
9, -(2/3), 56/27, 0, -(34/27), 6}, {0, 0, -(2/9), -(2/3), -(2/9), 2/
3, 40/27, 0, 202/27, -(10/3)}}
True
{{Root[183264739328 - 368304734208 # + 118605081600 #^2 +
15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 +
3735396 #^7 + 59049 #^8& , 1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0,
Root[183264739328 - 368304734208 # + 118605081600 #^2 +
15910929792 #^3 - 4571121600 #^4 - 395263800 #^5 + 37995480 #^6 +
3735396 #^7 + 59049 #^8& , 2, 0], 0, 0, 0, 0, 0, 0, 0, 0}, {0,
0, -(32/3), 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, Root[
183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 -
4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 +
59049 #^8& , 3, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Root[
183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 -
4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 +
59049 #^8& , 8, 0], 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, Root[
183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 -
4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 +
59049 #^8& , 4, 0], 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, Root[
183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 -
4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 +
59049 #^8& , 7, 0], 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, Root[
183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 -
4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 +
59049 #^8& , 6, 0], 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 4/3, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 0, Root[
183264739328 - 368304734208 # + 118605081600 #^2 + 15910929792 #^3 -
4571121600 #^4 - 395263800 #^5 + 37995480 #^6 + 3735396 #^7 +
59049 #^8& , 5, 0]}}
I do not now what is that Root and what is doing!
Root– mikado Jun 25 '21 at 09:36