I am trying to locate the time when $R=1,T=0,P=0$ in my system of equations, but I get the following errors:
here is the code:
m = 1;
q = 1;
V[t_] := 1;
B0[t_] := 1;
\[CapitalOmega] = 1/27;
Br[t_, r_, \[Theta]_, \[Phi]_] := B0[t]/r^2;
Bt[t_, r_, \[Theta]_, \[Phi]_] := 0;
Bp[t_, r_, \[Theta]_, \[Phi]_] :=
B0[t]/r \[CapitalOmega]/V[t] Sin[\[Theta]];
eq1 = m D[R[t, r, \[Theta], \[Phi]], {t, 2}] ==
q (D[T[t, r, \[Theta], \[Phi]], t] Bp[t, r, \[Theta], \[Phi]] -
D[P[t, r, \[Theta], \[Phi]], t] Bt[t, r, \[Theta], \[Phi]]);
eq2 = m D[T[t, r, \[Theta], \[Phi]], {t, 2}] ==
q (D[P[t, r, \[Theta], \[Phi]], t] Br[t, r, \[Theta], \[Phi]] -
D[R[t, r, \[Theta], \[Phi]], t] Bp[t, r, \[Theta], \[Phi]]);
eq3 = m D[P[t, r, \[Theta], \[Phi]], {t, 2}] ==
q (D[R[t, r, \[Theta], \[Phi]], t] Bt[t, r, \[Theta], \[Phi]] -
D[T[t, r, \[Theta], \[Phi]], t] Br[t, r, \[Theta], \[Phi]]);
{{Pr, Pt, Pp}, points} =
NDSolveValue[{eq1, eq2, eq3, R[0, r, [Theta], [Phi]] == 0,
Derivative[1, 0, 0, 0][R][0, r, [Theta], [Phi]] == 0.1,
T[0, r, [Theta], [Phi]] == Pi/3,
Derivative[1, 0, 0, 0][T][0, r, [Theta], [Phi]] == -1,
P[0, r, [Theta], [Phi]] == -Pi/3,
Derivative[1, 0, 0, 0][P][0, r, [Theta], [Phi]] == -1,
WhenEvent[{R[t, r, [Theta], [Phi]] == 1,
T[t, r, [Theta], [Phi]] == 0, P[t, r, [Theta], [Phi]] == 0},
Sow[t]]}, {R, T, P}, {t, 0, 10}, {r, 0.1, 2}, {[Theta], -(Pi/3),
Pi/3}, {[Phi], -(Pi/3), Pi/3}]
I thought it happened because my functions never meet my conditions, so I tried changing the initial conditions, so that $R=1,T=0,P=0$ at the initial time, but I still got the same errors.
EDIT I have tried following the solution in the linked comment. I have defined a function
eval[if : InterpolatingFunction[___][x_]] := if /. x -> "ValuesOnGrid";
and substituted the WhenEvent with
WhenEvent[{eval[R[t, r, \[Theta], \[Phi]]] == 1, eval[T[t, r, \[Theta], \[Phi]]] == 0, eval[P[t, r, \[Theta], \[Phi]]] == 0}, Sow[t]]
but I still get the same error

WhenEvent[]in PDEs is tricky and possibly undocumented): https://mathematica.stackexchange.com/a/186930/4999 – Michael E2 Jul 12 '21 at 20:07